Chemistry:Transition metal nitrate complex

From HandWiki
Short description: Compound of nitrate ligands
Structure of the metal nitrate complex [Rh(NO3)5]2-.[1]

A transition metal nitrate complex is a coordination compound containing one or more nitrate ligands. Such complexes are common starting reagents for the preparation of other compounds.[2]

Ligand properties

Being the conjugate base of a strong acid (nitric acid, pKa = -1.4), nitrate has modest Lewis basicity. Two coordination modes are common: unidentate and bidentate. Often, bidentate nitrate, denoted κ2-NO3, is bound unsymmetrically in the sense that one M-O distance is clearly bonding and the other is more weakly interacting.[2] The MO-N distances for the coordinated oxygen are longer by about 10 picometers longer than the N-Oterminal bonds. This observation suggests that the terminal N-O bonds have double bond character. Nitrate is isostructural with but less basic than carbonate. Both exhibit comparable coordination geometries. The nitrogen center of nitrate does not form bonds to metals.

Coordination complexes

With three terminal oxide groups, nitrate can in principle bind metals through many geometries. Even though the ligand is written as MNO3, the oxygen atoms are invariably coordinated. Thus, monodentate nitrate is illustrated by [Co(NH3)5NO3]2+, which could also be written as [Co(NH3)5ONO2]2+. Homoleptic metal nitrate complexes generally have O,O'-bidentate nitrate ligands.

Homoleptic metal nitrates and related compounds
Formula name comment
Ti(NO3)4 titanium(IV) nitrate eight-coordinate, volatile
Co(NO3)3 cobalt(III) nitrate octahedral volatile
Cu(NO3)2 copper(II) nitrate planar, volatile
AgNO3 silver nitrate coordination polymer

Hydrates

Typical metal nitrates are hydrated. Some of these salts crystallize with one or more nitrate ligands, but most are assumed to dissolve in water to give aquo complexes, often of the stoichiometry [M(H2O)6]n+.

Synthesis

Metal nitrate complexes are often prepared by treating metal oxides or metal carbonates with nitric acid. The main complication with dissolving metals in nitric acid arises from redox reactions, which can afford either nitric oxide or nitrogen dioxide.

Anhydrous nitrates can be prepared by the oxidation of metals with dinitrogen tetroxide (often as a mixture with nitrogen dioxide, with which it interconverts). N2O4 undergoes molecular autoionization to give [NO+] [NO3], with the former nitrosonium ion being a strong oxidant. The method is illustrated by the route to β-Cu(NO3)2:

Cu + 2 N2O4 → Cu(NO3)2 + 2 NO

Many metals, metal halides, and metal carbonyls undergo similar reactions, but the product formulas can be deceptive. For example from chromium one obtains Cr(NO3)3(N2O4)2, which was shown to be the salt (NO+)2[Cr(NO3)5]2-.[15] Nitrogen oxides readily interconvert between various forms, some of which may act as completing ligands. The redox reaction of nitrosonium and the metal can give rise to nitrogen oxide which forms strong metal nitrosyl complexes; nitronium ions (NO2+) are similarly obversed.[16]

In some cases, nitrate complexes are produced from the reaction of nitrogen dioxide with a metal dioxygen complex:[17]

Pt(O
2
)(PPh
3
)
2
+ NO
2
→ Pt(NO
3
)
2
(PPh
3
)
2
(PPh3 = triphenylphosphine)

Reactions

Given nitrate's low basicity, the tendency of metal nitrate complexes toward hydrolysis is expected. Thus copper(II) nitrate readily dissociates in aqueous solution to give the aqua complex:

Cu(NO3)2 + 6 H2O → [Cu(H2O)6](NO3)2

Pyrolysis of metal nitrates yields oxides.[18]

Ni(NO3)2 → NiO + NO2 + 0.5 O2

This reaction is used to impregnate oxide supports with nickel oxides.

Nitrate reductase enzymes convert nitrate to nitrite. The mechanism involves the intermediacy of Mo-ONO2 complexes.[19]

References

  1. Vasilchenko, Danila; Vorobieva, Sofia; Baidina, Iraida; Piryazev, Dmitry; Tsipis, Athanassios; Korenev, Sergey (2018). "Structure and Properties of a Rhodium(III) Pentanitrato Complex Embracing Uni- and Bidentate Nitrato Ligands". Polyhedron 147: 69–74. doi:10.1016/j.poly.2018.03.017. 
  2. 2.0 2.1 Addison, C. C.; Logan, N.; Wallwork, S. C.; Garner, C. D. (1971). "Structural Aspects of Co-ordinated Nitrate Groups". Quarterly Reviews, Chemical Society 25 (2): 289. doi:10.1039/qr9712500289. 
  3. Lazar, D.; Ribár, B.; Divjaković, V.; Mészáros, Cs. (1991). "Structure of Hexaaquachromium(III) Nitrate Trihydrate". Acta Crystallographica Section C: Crystal Structure Communications 47 (5): 1060–1062. doi:10.1107/S0108270190012628. 
  4. Hair, Neil J.; Beattie, James K. (1977). "Structure of Hexaaquairon(III) Nitrate Trihydrate. Comparison of Iron(II) and Iron(III) Bond Lengths in High-Spin Octahedral Environments". Inorganic Chemistry 16 (2): 245–250. doi:10.1021/ic50168a006. 
  5. H. Schmidt, A. Asztalos, F. Bok and W. Voigt (2012): "New Iron(III) Nitrate Hydrates: Fe(NO3)3·xH2O with x = 4, 5 and 6". Acta Crystallographica Section C: - Inorganic Compounds, volume C68, pages i29-i33. doi:10.1107/S0108270112015855
  6. Prelesnik, P. V.; Gabela, F.; Ribar, B.; Krstanovic, I. (1973). "Hexaaquacobalt(II) Nitrate". Cryst. Struct. Commun. 2 (4): 581–583. 
  7. Gallezot, P.; Weigel, D.; Prettre, M. (1967). "Structure du Nitrate de Nickel Tétrahydraté". Acta Crystallographica 22 (5): 699–705. doi:10.1107/S0365110X67001392. 
  8. Morosin, B.; Haseda, T. (1979). "Crystal Structure of the β Form of Ni(NO3)2·4H2O". Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 35 (12): 2856–2858. doi:10.1107/S0567740879010827. 
  9. Laligant, Y.; Ferey, G.; Le Bail, A. (1991). "Crystal Structure of Pd(NO3)2(H2O)2". Materials Research Bulletin 26 (4): 269–275. doi:10.1016/0025-5408(91)90021-D. 
  10. Dornberger-Schiff, K.; Leciejewicz, J. (1958). "Zur Struktur des Kupfernitrates Cu(NO3)2·1.5H2O". Acta Crystallogr 11 (11): 825–826. doi:10.1107/S0365110X58002322. 
  11. Morosin, B. (1970). "The Crystal Structure of Cu(NO3)2·2.5H2O". Acta Crystallogr B26 (9): 1203–1208. doi:10.1107/S0567740870003898. 
  12. J. Garaj, Sbornik Prac. Chem.-Technol. Fak. Svst., Cskosl. 1966, pp. 35–39.
  13. Zibaseresht, R.; Hartshorn, R. M. (2006). "Hexaaquacopper(II) Dinitrate: Absence of Jahn-Teller Distortion". Acta Crystallogr. E62: i19–i22. doi:10.1107/S1600536805041851. 
  14. D. Grdenić (1956). "The Crystal Structure of Mercurous Nitrate Dihydrate". Journal of the Chemical Society: 1312. doi:10.1039/jr9560001312. 
  15. Addison, C. Clifford (1980). "Dinitrogen Tetroxide, Nitric Acid, and Their Mixtures as Media for Inorganic Reactions". Chemical Reviews 80: 21–39. doi:10.1021/cr60323a002. 
  16. Wickleder, Mathias S.; Gerlach, Frauke; Gagelmann, Steffen; Bruns, Jörn; Fenske, Mandus; Al-Shamery, Katharina (27 February 2012). "Thermolabile Noble Metal Precursors: (NO)[Au(NO3)4], (NO)2[Pd(NO3)4], and (NO)2[Pt(NO3)6]". Angewandte Chemie International Edition 51 (9): 2199–2203. doi:10.1002/anie.201106107. 
  17. Cook, Christopher David.; Jauhal, G. S. (1967). "Oxidation of coordinated ligands. Sulfato and nitrato complexes of platinum". Journal of the American Chemical Society 89 (12): 3066–3067. doi:10.1021/ja00988a057. 
  18. Criado, J.M.; Ortega, A.; Real, C. (1987). "Mechanism of the thermal decomposition of anhydrous nickel nitrate". Reactivity of Solids 4 (1–2): 93–103. doi:10.1016/0168-7336(87)80089-X. 
  19. Hille, Russ; Hall, James; Basu, Partha (2014). "The Mononuclear Molybdenum Enzymes". Chemical Reviews 114 (7): 3963–4038. doi:10.1021/cr400443z. PMID 24467397.