Earth:List of paleocontinents

From HandWiki
Animation of the break-up of the supercontinent Pangaea and the subsequent drift of its constituents, from the Early Triassic to recent (250 Ma to 0).
Animation of the break-up of the supercontinent Pangaea and the subsequent drift of its constituents, from the Early Triassic to recent (250 Ma to 0).
Short description: none

This is a list of paleocontinents, significant landmasses that have been proposed to exist in the geological past. The degree of certainty to which the identified landmasses can be regarded as independent entities reduces as geologists look further back in time. The list includes cratons, supercratons, microcontinents, continents and supercontinents. For the Archean to Paleoproterozoic cores of most of the continents see also list of shields and cratons.

List of paleocontinents

Name Age (Ma) Period/Era Range Type Comments Sources
Amazonia Craton [1][2][3]
Arabia–Nubia 610 Neoproterozoic Microcontinent Rifted off Rodinia at about 840 Ma. Then accreted to North Africa with large volume of juvenile crust during the Pan-African orogeny to form the Arabian-Nubian Shield. [4][5]
Arctica 2565 Neoarchean Supercraton [6]
Argoland 155 an archipelago of microcontinents Rifted off Australia 155 Ma ago after splitting into microcontinents about 215Ma ago [7][8]
Atlantica 1500 Mesoproterozoic Continent Formed from a series of cratons during the development of Columbia - independent from about 1500 Ma, following break-up of Columbia - part of Rodinia from 1000 Ma [2]
Avalonia Cambrian Continent Rifted off northern Gondwana in the Cambrian, eventually colliding with Laurentia and Baltica in the Caledonian Orogeny to form Laurussia. [9]
Baltica 2000 Paleoproterozoic Continent Formed from three cratonic fragments - the Baltic Shield, Sarmatia and Volgo–Uralia. Formed part of Columbia, then Rodinia and Pannotia. Collided with Laurentia and Avalonia to form Laurussia. [1][4][2][10]
Cathaysia 1800 Continent Fused with the Yangtze block to form the South China Craton during the Early Paleozoic. [11]
Cimmeria 300 Late Carboniferous–Early Permian Continent Rifted off margin of Gondwana, opening up Neotethys, collided with Laurasia about 150 Ma in the Cimmerian Orogeny. Regarded as being made up of many separate continental fragments. [12]
Columbia (Nuna) 2100 Paleoproterozoic Supercontinent Oldest widely accepted supercontinent. also known as Nuna. [13][3]
East Antarctica Craton [14]
East European Craton The cratonic core of Baltica or a synonym for the paleocontinent [2][10]
Gondwana 500 Late Neoproterozoic Continent Also described as a supercontinent [4][15]
India Continent [1][4]
Kalahari Craton [1][4]
Kazakhstania Continent [16]
Kenorland 2720 Neoarchean Supercontinent Alternatively, landmasses may have grouped into two supercratons, Sclavia and Superia [17]
Laurasia Carboniferous-Permian Continent Formed by the break-up of Pangaea after Kazakhstania and Siberia had joined with the former Laurussia [15]
Laurentia 1830 Paleoarchean Continent [1]
Laurussia 425 Early Devonian Continent The "Old Red Continent" formed by the Caledonian Orogeny, joined with Gondwana to form Pangaea [18]
Mawson 1730 Paleoproterozoic Continent [3]
Nena 1900 Paleoproterozoic Continent [13]
North Australia 2000 Paleoproterozoic Craton [19]
North China 2500 Paleoproterozoic Craton [1][4]
Pangaea 350 Late Permian Supercontinent [15]
Pannotia 600 Neoproterozoic Supercontinent [20]
Rodinia 1000 Mesoproterozoic Supercontinent [4]
São Francisco–Congo 1800 Proterozoic Craton [1][13]
Sclavia Paleoarchean Supercraton [17]
Siberia 2800 Neoarchean Continent [1][4]
Sahul Paleoproterozoic paleocontinent mainland Australia, Tasmania, New Guinea, and Aru Islands. [21]
South Australia Craton [19]
South China Neoproterozoic Craton [4]
Superia 2680 Neoarchean Supercraton [17]
Tarim Early Mesoproterozoic Craton [22][4]
Ur 3100 Mesoarchean Continent [23]
Vaalbara 3300 Late Neoarchean–Early Paleoproterozoic Continent [17]
West Africa Paleoproterozoic Craton [2][1][3]
West Australia 2000 Paleoprotereozoic Craton [19]
Yangtze 1800 Late Neoarchean–Early Paleoproterozoic Craton Fused with the Cathaysia block to form the South China Craton during the Early Paleozoic. [11]

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Mertanen, S.; Pesonen, L.J. (2012). "2. Paleo-Mesoproterozoic Assemblages of Continents: Paleomagnetic Evidence for Near Equatorial Supercontinents". in Haapala, I.. From the Earth's Core to Outer Space. Lecture Notes in Earth System Sciences. 137. Springer Science & Business Media. doi:10.1007/978-3-642-25550-2_2. ISBN 9783642255502. https://www.researchgate.net/publication/235390645. 
  2. 2.0 2.1 2.2 2.3 2.4 Terentiev, R.A.; Santosh, M. (2020). "Baltica (East European Craton) and Atlantica (Amazonian and West African Cratons) in the Proterozoic: The pre-Columbia connection". Earth-Science Reviews 210: 103378. doi:10.1016/j.earscirev.2020.103378. Bibcode2020ESRv..21003378T. 
  3. 3.0 3.1 3.2 3.3 Pisarevsky, S.A.; Elming, S.-Å.; Pesonen, L.J.; Li, Z.-X. (2014). "Mesoproterozoic paleogeography: Supercontinent and beyond". Precambrian Research 244: 207–225. doi:10.1016/j.precamres.2013.05.014. Bibcode2014PreR..244..207P. 
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 Li, Z.X.; Bogdanova, S.V.; Collins, A.S.; Davidson, A.; De Waele, B.; Ernst, R.E.; Fitzsimmons, I.C.W.; Fuck, R.A. et al. (2008). "Assembly, configuration, and break-up history of Rodinia: A synthesis". Precambrian Research 160 (1–2): 179–210. doi:10.1016/j.precamres.2007.04.021. Bibcode2008PreR..160..179L. 
  5. Condie, K.C. (2003). "Supercontinents, superplumes and continental growth: the Neoproterozoic record". in Yoshida, M.. Proterozoic East Gondwana: Supercontinent Assembly and Breakup. Geological Society, Special Publications. 206. p. 1–21. doi:10.1144/GSL.SP.2003.206.01.02. ISBN 9781862391253. 
  6. Rogers, J. J. W.; Santosh, M. (2003). "Supercontinents in Earth History" (PDF). Gondwana Research 6 (3): 357–368. doi:10.1016/S1342-937X(05)70993-X. Bibcode2003GondR...6..357R. https://www.researchgate.net/publication/222049723. Retrieved 8 March 2016. 
  7. https://www.heritagedaily.com/2023/10/geological-puzzle-of-lost-continent-of-argoland-solved/148993
  8. https://www.newsweek.com/lost-continent-argoland-discovered-hidden-beneath-jungle-1836908
  9. Nance, R.D.; Murphy, J.B.; Keppie, J.D. (2002). "A Cordilleran model for the evolution of Avalonia". Tectonophysics 352 (1–2): 11–31. doi:10.1016/S0040-1951(02)00187-7. Bibcode2002Tectp.352...11N. 
  10. 10.0 10.1 Lubnina, N.V.; Pisarevsky, S.A.; Stepanova, A.V.; Bogdanova, S.V.; Sokolov, S.J. (2017). "Fennoscandia before Nuna/Columbia: Paleomagnetism of 1.98–1.96 Ga mafic rocks of the Karelian craton and paleogeographic implications". Precambrian Research 292: 1–12. doi:10.1016/j.precamres.2017.01.011. Bibcode2017PreR..292....1L. 
  11. 11.0 11.1 Su, W.; Huff, W.D.; Ettensohn, F.R.; Liu, X.; Zhang, J.; Li, Z. (2009). "K-bentonite, black-shale and flysch successions at the Ordovician–Silurian transition, South China: Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana". Gondwana Research 15 (1): 111–130. doi:10.1016/j.gr.2008.06.004. Bibcode2009GondR..15..111S. 
  12. Ueno, K. (2003). "The Permian fusulinoidean faunas of the Sibumasu and Baoshan blocks: their implications for the paleogeographic and paleoclimatologic reconstruction of the Cimmerian Continent". Palaeogeography, Palaeoclimatology, Palaeoecology 193 (1): 1–24. doi:10.1016/S0031-0182(02)00708-3. Bibcode2003PPP...193....1U. 
  13. 13.0 13.1 13.2 Meert, J.G.; Santosh, M. (2017). "The Columbia supercontinent revisited". Gondwana Research 50: 67–83. doi:10.1016/j.gr.2017.04.011. Bibcode2017GondR..50...67M. 
  14. Goodge, J.W.; Fanning, C.M.; Fisher, C.M.; Vervoort, J.D. (2017). "Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia". Precambrian Research 299: 151–176. doi:10.1016/j.precamres.2017.07.026. Bibcode2017PreR..299..151G. 
  15. 15.0 15.1 15.2 Correia, P.; Murphy, J.B. (2020). "Iberian-Appalachian connection is the missing link between Gondwana and Laurasia that confirms a Wegenerian Pangaea configuration". Scientific Reports 10 (1): 2498. doi:10.1038/s41598-020-59461-x. PMID 32051503. Bibcode2020NatSR..10.2498C. 
  16. Popov, L. E.; Cocks, L. R. M. (2006). "Late Ordovician brachiopods from the Dulankara Formation of the Chu‐Ili Range, Kazakhstan: their systematics, palaeoecology and palaeobiogeography". Palaeontology 49 (2): 247–283. doi:10.1111/j.1475-4983.2006.00544.x. Bibcode2006Palgy..49..247P. 
  17. 17.0 17.1 17.2 17.3 Bleeker, W. (2003). "The late Archean record: a puzzle in ca. 35 pieces". Lithos 71 (2–4): 99–134. doi:10.1016/j.lithos.2003.07.003. Bibcode2003Litho..71...99B. 
  18. Ziegler, P.A. (2012). Evolution of Laurussia: A Study in Late Palaeozoic Plate Tectonics. Springer Science & Business Media. ISBN 9789400904699. 
  19. 19.0 19.1 19.2 Cawood, P.A.; Korsch, R.J. (2008). "Assembling Australia: Proterozoic building of a continent". Precambrian Research 166 (1–4): 1–35. doi:10.1016/j.precamres.2008.08.006. Bibcode2008PreR..166....1C. 
  20. Nance, R.D.; Murphy, J.B. (2019). "Supercontinents and the case for Pannotia". in Wilson, R.W.. Fifty Years of the Wilson Cycle Concept in Plate Tectonics. Geological Society, Special Publications. 470. pp. 65–86. doi:10.1144/SP470.5. ISBN 9781786203830. 
  21. White, J. Peter; O'Connell, James F. (1982). A prehistory of Australia, New Guinea and Sahul. Sydney: Academic Press Australia. p. 6. ISBN 0-12-746750-5. 
  22. Zhang, C.-L.; Ye, X.-T.; Ernst, R.E.; Zhong, Y.; Zhang, J.; Li, H.-K.; Long, X.-P. (2019). "Revisiting the Precambrian evolution of the Southwestern Tarim terrane: Implications for its role in Precambrian supercontinents". Precambrian Research 324: 18–31. doi:10.1016/j.precamres.2019.01.018. Bibcode2019PreR..324...18Z. 
  23. Nance, R. D.; Murphy, J. B.; Santosh, M. (2014). "The supercontinent cycle: a retrospective essay". Gondwana Research 25 (1): 4–29. doi:10.1016/j.gr.2012.12.026. Bibcode2014GondR..25....4N. https://www.researchgate.net/publication/235834618. Retrieved 22 November 2020.