Elliott–Halberstam conjecture

From HandWiki
Short description: On the distribution of prime numbers in arithmetic progressions

In number theory, the Elliott–Halberstam conjecture is a conjecture about the distribution of prime numbers in arithmetic progressions. It has many applications in sieve theory. It is named for Peter D. T. A. Elliott and Heini Halberstam, who stated the conjecture in 1968.[1]

Stating the conjecture requires some notation. Let [math]\displaystyle{ \pi(x) }[/math], the prime-counting function, denote the number of primes less than or equal to [math]\displaystyle{ x }[/math]. If [math]\displaystyle{ q }[/math] is a positive integer and [math]\displaystyle{ a }[/math] is coprime to [math]\displaystyle{ q }[/math], we let [math]\displaystyle{ \pi(x;q,a) }[/math] denote the number of primes less than or equal to [math]\displaystyle{ x }[/math] which are equal to [math]\displaystyle{ a }[/math] modulo [math]\displaystyle{ q }[/math]. Dirichlet's theorem on primes in arithmetic progressions then tells us that

[math]\displaystyle{ \pi(x;q,a) \approx \frac{\pi(x)}{\varphi(q)} }[/math]

where [math]\displaystyle{ \varphi }[/math] is Euler's totient function. If we then define the error function

[math]\displaystyle{ E(x;q) = \max_{\text{gcd}(a,q) = 1} \left|\pi(x;q,a) - \frac{\pi(x)}{\varphi(q)}\right| }[/math]

where the max is taken over all [math]\displaystyle{ a }[/math] coprime to [math]\displaystyle{ q }[/math], then the Elliott–Halberstam conjecture is the assertion that for every [math]\displaystyle{ \theta \lt 1 }[/math] and [math]\displaystyle{ A \gt 0 }[/math] there exists a constant [math]\displaystyle{ C \gt 0 }[/math] such that

[math]\displaystyle{ \sum_{1 \leq q \leq x^\theta} E(x;q) \leq \frac{C x}{\log^A x} }[/math]

for all [math]\displaystyle{ x \gt 2 }[/math].

This conjecture was proven for all [math]\displaystyle{ \theta \lt 1/2 }[/math] by Enrico Bombieri[2] and A. I. Vinogradov[3] (the Bombieri–Vinogradov theorem, sometimes known simply as "Bombieri's theorem"); this result is already quite useful, being an averaged form of the generalized Riemann hypothesis. It is known that the conjecture fails at the endpoint [math]\displaystyle{ \theta = 1 }[/math].[4]

The Elliott–Halberstam conjecture has several consequences. One striking one is the result announced by Dan Goldston, János Pintz, and Cem Yıldırım,[5][6] which shows (assuming this conjecture) that there are infinitely many pairs of primes which differ by at most 16. In November 2013, James Maynard showed that subject to the Elliott–Halberstam conjecture, one can show the existence of infinitely many pairs of consecutive primes that differ by at most 12.[7] In August 2014, Polymath group showed that subject to the generalized Elliott–Halberstam conjecture, one can show the existence of infinitely many pairs of consecutive primes that differ by at most 6.[8] Without assuming any form of the conjecture, the lowest proven bound is 246.

See also

Notes

  1. Elliott, Peter D. T. A.; Halberstam, Heini (1970). "Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69)". Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69). London: Academic Press. pp. 59–72. 
  2. Bombieri, Enrico (1965). "On the large sieve". Mathematika 12 (2): 201–225. doi:10.1112/s0025579300005313. 
  3. Vinogradov, Askold Ivanovich (1965). "The density hypothesis for Dirichlet L-series" (in ru). Izv. Akad. Nauk SSSR Ser. Mat. 29 (4): 903–934.  Corrigendum. ibid. 30 (1966), pages 719-720. (Russian)
  4. Friedlander, John; Granville, Andrew (1989). "Limitations to the equi-distribution of primes I". Annals of Mathematics 129 (2): 363–382. doi:10.2307/1971450. 
  5. Goldston, D. A.; Pintz, J.; Yıldırım, C. Y. (2009). "Primes in Tuples I". Annals of Mathematics. Second Series 170 (2): 819–862. doi:10.4007/annals.2009.170.819. 
    Goldston, D. A.; Motohashi, Y.; Pintz, J.; Yıldırım, C. Y. (April 2006). "Small Gaps between Primes Exist". Proceedings of the Japan Academy, Series A, Mathematical Sciences 82 (4): 61–65. doi:10.3792/pjaa.82.61. 
    Goldston, D. A.; Graham, S. W.; Pintz, J.; Yıldırım, C. Y. (2009). "Small gaps between primes or almost primes". Transactions of the American Mathematical Society 361 (10): 5285–5330. doi:10.1090/S0002-9947-09-04788-6. 
  6. Soundararajan, Kannan (2007). "Small gaps between prime numbers: The work of Goldston–Pintz–Yıldırım". Bulletin of the American Mathematical Society 44 (1): 1–18. doi:10.1090/S0273-0979-06-01142-6. 
  7. Maynard, James (2015). "Small gaps between primes". Annals of Mathematics 181 (1): 383–413. doi:10.4007/annals.2015.181.1.7. 
  8. D.H.J. Polymath (2014). "Variants of the Selberg sieve, and bounded intervals containing many primes". Research in the Mathematical Sciences 1 (12). doi:10.1186/s40687-014-0012-7.