Legendre's constant
Legendre's constant is a mathematical constant occurring in a formula constructed by Adrien-Marie Legendre to approximate the behavior of the prime-counting function [math]\displaystyle{ \pi(x) }[/math]. The value that corresponds precisely to its asymptotic behavior is now known to be 1.
Examination of available numerical data for known values of [math]\displaystyle{ \pi(x) }[/math] led Legendre to an approximating formula.
Legendre constructed in 1808 the formula
- [math]\displaystyle{ \pi(x)\approx\frac{x}{\log(x) - B}, }[/math]
where [math]\displaystyle{ B = 1.08366 }[/math] (OEIS: A228211), as giving an approximation of [math]\displaystyle{ \pi(x) }[/math] with a "very satisfying precision".[1][2]
Today, one defines the value of [math]\displaystyle{ B }[/math] such that
- [math]\displaystyle{ \pi(x)\sim\frac{x}{\log(x) - B}, }[/math]
which is solved by putting
- [math]\displaystyle{ B=\lim_{n \to \infty } \left( \log(n) - {n \over \pi(n)} \right), }[/math]
provided that this limit exists.
Not only is it now known that the limit exists, but also that its value is equal to [math]\displaystyle{ 1, }[/math] somewhat less than Legendre's [math]\displaystyle{ 1.08366. }[/math] Regardless of its exact value, the existence of the limit [math]\displaystyle{ B }[/math] implies the prime number theorem.
Pafnuty Chebyshev proved in 1849[3] that if the limit B exists, it must be equal to 1. An easier proof was given by Pintz in 1980.[4]
It is an immediate consequence of the prime number theorem, under the precise form with an explicit estimate of the error term
- [math]\displaystyle{ \pi(x) = \operatorname{Li} (x) + O \left(x e^{-a\sqrt{\log x}}\right) \quad\text{as } x \to \infty }[/math]
(for some positive constant a, where O(…) is the big O notation), as proved in 1899 by Charles de La Vallée Poussin,[5] that B indeed is equal to 1. (The prime number theorem had been proved in 1896, independently by Jacques Hadamard[6] and La Vallée Poussin,[7] but without any estimate of the involved error term).
Being evaluated to such a simple number has made the term Legendre's constant mostly only of historical value, with it often (technically incorrectly) being used to refer to Legendre's first guess 1.08366... instead.
References
- ↑ Legendre, A.-M. (1808). Essai sur la théorie des nombres. Courcier. p. 394. https://gallica.bnf.fr/ark:/12148/bpt6k62826k/f420.item.
- ↑ Ribenboim, Paulo (2004). The Little Book of Bigger Primes. New York: Springer-Verlag. p. 188. ISBN 0-387-20169-6.
- ↑ Edmund Landau. Handbuch der Lehre von der Verteilung der Primzahlen, page 17. Third (corrected) edition, two volumes in one, 1974, Chelsea 1974
- ↑ Pintz, Janos (1980). "On Legendre's Prime Number Formula". The American Mathematical Monthly 87 (9): 733–735. doi:10.2307/2321863. ISSN 0002-9890. https://www.jstor.org/stable/2321863.
- ↑ La Vallée Poussin, C. Mém. Couronnés Acad. Roy. Belgique 59, 1–74, 1899
- ↑ Sur la distribution des zéros de la fonction [math]\displaystyle{ \zeta(s) }[/math] et ses conséquences arithmétiques, Bulletin de la Société Mathématique de France, Vol. 24, 1896, pp. 199–220 Online
- ↑ « Recherches analytiques sur la théorie des nombres premiers », Annales de la société scientifique de Bruxelles, vol. 20, 1896, pp. 183–256 et 281–361
External links
Original source: https://en.wikipedia.org/wiki/Legendre's constant.
Read more |