Engineering:Inkjet technology

From HandWiki
Jump to: navigation, search

Inkjet technology is a method for depositing liquid droplets on a substrate. It was originally developed for the publishing industry, but has become a popular method in digital fabrication of electronic and mechanical devices. Although both terms, "inkjet technology" and "inkjet printing", are commonly used interchangeably, inkjet printing usually refers to the publishing industry, used for printing graphical content, while inkjet technology usually refers to the general purpose fabrication via inkjetting.

Applications

Inks must have high conductivity, high oxidation resistance and low sintering temperature.

  • optical devices.[11]

Personalized medications

Drop formation

Various drop formation technologies exist, and can be classified into two main types: continuous inkjet (CIJ) and drop-on-demand (DOD).[12]

While CIJ has a straightforward drop creation and sophisticated drop trajectory manipulation, DOD has sophisticated drop creation and no trajectory manipulation.

Classification of inkjet technologies[13]
Drop-on-demand (DOD) Continuous (CIJ) Electrospray
Thermal Piezoelectric Single jet Multiple jet
Face shooter Side shooter Shear Extension Unimorph/bimorph Squeeze Acoustic modulation Thermal modulation

Drop-on-demand (DOD)

In this method, drops of ink are released individually, on demand, by a voltage signal. Released drops fall vertically without any trajectory manipulation. Commercial printheads can have tens to thousands of nozzles.

The two leading technologies for forcing ink out of a nozzle on demand are thermal DOD and piezoelectric DOD. Additional technologies include electrospray,[14][15] acoustic discharge,[16] electrostatic membrane[17] and thermal bimorph.[18]

Piezoelectric DOD

The piezoelectric voltage pulse determines the jetted volume.

Piezoelectric DOD was invented in the 1970s.[19][20] One disadvantage of the piezo-DOD method is that jettable inks must have viscosity and surface tension within a relatively strict range.

Thermal inkjet (TIJ) DOD

Comparison between piezoelectric jet (left) and thermal jet (right)

Thermal DOD was introduced in the 1980s by Canon[21] and Hewlett-Packard.[22]

One disadvantage of this method is that the variety of inks compatible with TIJ is essentially limited, because this method is compatible with inks that have high vapour pressure, low boiling point and high kogation stability.[23][24] Water being such a solvent, limited the popularity of this method for non-industrial photo printing only, where water-based inks are used.

Continuous inkjet (CIJ)

In this method, a column of ink is released continuously from the nozzle. The ink column spontaneously breaks into separate drops due to the Plateau–Rayleigh flow instability. The formed ink drops are either deflected by an electric field towards the desired location on the substrate, or collected for reuse. CIJ printheads can be either have a single jet (nozzle) or multiple jets (nozzles).

One disadvantage of the CIJ method is the need for solvent monitoring. Since only a small fraction of the ink is being used for actual printing, solvent must be continually added to the recycled ink to compensate the evaporation that takes place during flight of the recycled drops.[23]

Another disadvantage is the need for ink additives. Since this method is based on electrostatic deflection, ink additives, such as potassium thiocyanate, may deteriorate the performance of the printed devices.[23]

The printhead

The printhead must have heating capability to print metallic alloys such as lead, tin, indium, zinc and aluminium. The process of printing of low-melting point metals is called "direct melt printing".

Photo inkjet printhead

Tandem printheads

Multiple printheads

Fabrication approaches

The printed material is sometimes only one step in the process, which may include deposition of a precursor followed by a catalyst, sintering, photonic curing, electroless plating etc., to give the final result.

  • Direct deposition
  • Mask printing
  • Etching
  • Inverse printing
  • Powder bed

Additive inkjet fabrication

Subtractive inkjet fabrication

Inkjettable materials

The ink must be liquid, but may also contain small solids if they do not cause clogging. The solid particles should be smaller than 1/10 of the nozzle diameter to avoid clogging.

Drop formation is governed by two physical properties: surface tension and viscosity. The surface tension forms ejected drops into spheres, in accordance with Plateau–Rayleigh instability. The viscosity can be optimized at jet time by using an appropriate printhead temperature.

Generally, lower viscosity allows better droplet formation[25] and in practice only liquids with viscosities of 2-50 mPa s can be printed.[13] More precisely, liquids whose Ohnesorge number is larger than 0.1 and smaller than 1 are jettable.[26][27][28]

References

  1. Loffredo, F.; Burrasca, G.; Quercia, L.; Sala, D. Della (2007). "Gas Sensor Devices Obtained by Ink-jet Printing of Polyaniline Suspensions". Macromolecular Symposia 247 (1): 357–363. doi:10.1002/masy.200750141. ISSN 1022-1360. 
  2. Ando, B.; Baglio, S. (December 2013). "All-Inkjet Printed Strain Sensors". IEEE Sensors Journal 13 (12): 4874–4879. doi:10.1109/JSEN.2013.2276271. ISSN 1530-437X. 
  3. Correia, V; Caparros, C; Casellas, C; Francesch, L; Rocha, J G; Lanceros-Mendez, S (2013). "Development of inkjet printed strain sensors". Smart Materials and Structures 22 (10): 105028. doi:10.1088/0964-1726/22/10/105028. ISSN 0964-1726. Bibcode2013SMaS...22j5028C. 
  4. Ryu, D.; Meyers, F. N.; Loh, K. J. (2014). "Inkjet-printed, flexible, and photoactive thin film strain sensors". Journal of Intelligent Material Systems and Structures 26 (13): 1699–1710. doi:10.1177/1045389X14546653. ISSN 1045-389X. 
  5. Molina-Lopez, F.; Briand, D.; de Rooij, N.F. (2012). "All additive inkjet printed humidity sensors on plastic substrate". Sensors and Actuators B: Chemical 166–167: 212–222. doi:10.1016/j.snb.2012.02.042. ISSN 0925-4005. 
  6. Weremczuk, Jerzy; Tarapata, Grzegorz; Jachowicz, Ryszard (2012). "Humidity Sensor Printed on Textile with Use of Ink-Jet Technology". Procedia Engineering 47: 1366–1369. doi:10.1016/j.proeng.2012.09.410. ISSN 1877-7058. 
  7. Courbat, J.; Kim, Y.B.; Briand, D.; de Rooij, N.F. (2011). 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference. pp. 1356–1359. doi:10.1109/TRANSDUCERS.2011.5969506. ISBN 978-1-4577-0157-3. 
  8. Ando, B.; Baglio, S.; Marletta, V.; Pistorio, A. (2014). 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. pp. 1638–1642. doi:10.1109/I2MTC.2014.6861023. ISBN 978-1-4673-6386-0. 
  9. 9.0 9.1 Cappi, B.; Özkol, E.; Ebert, J.; Telle, R. (2008). "Direct inkjet printing of Si3N4: Characterization of ink, green bodies and microstructure". Journal of the European Ceramic Society 28 (13): 2625–2628. doi:10.1016/j.jeurceramsoc.2008.03.004. ISSN 0955-2219. 
  10. Wilson, Stephen A.; Jourdain, Renaud P.J.; Zhang, Qi; Dorey, Robert A.; Bowen, Chris R.; Willander, Magnus; Wahab, Qamar Ul; Willander, Magnus et al. (2007). "New materials for micro-scale sensors and actuators". Materials Science and Engineering: R: Reports 56 (1–6): 1–129. doi:10.1016/j.mser.2007.03.001. ISSN 0927-796X. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-49399. 
  11. Chen, Chin-Tai; Chiu, Ching-Long; Tseng, Zhao-Fu; Chuang, Chun-Te (2008). "Dynamic evolvement and formation of refractive microlenses self-assembled from evaporative polyurethane droplets". Sensors and Actuators A: Physical 147 (2): 369–377. doi:10.1016/j.sna.2008.06.006. ISSN 0924-4247. 
  12. Le, Hue P. (1998). "Progress and Trends in Ink-jet Printing Technology". Journal of Imaging Science and Technology 42 (1): 49–62. http://www.ingentaconnect.com/content/ist/jist/1998/00000042/00000001/art00007.  Alt URL
  13. 13.0 13.1 Hutchings, Ian M.; Martin, Graham D., eds (December 2012). Inkjet Technology for Digital Fabrication. Cambridge: Wiley. ISBN 978-0-470-68198-5. http://wiley.com/WileyCDA/WileyTitle/productCd-0470681985.html. 
  14. Taylor, G. (1964). "Disintegration of Water Drops in an Electric Field". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 280 (1382): 383–397. doi:10.1098/rspa.1964.0151. ISSN 1364-5021. Bibcode1964RSPSA.280..383T. 
  15. Cloupeau, Michel; Prunet-Foch, Bernard (1994). "Electrohydrodynamic spraying functioning modes: a critical review". Journal of Aerosol Science 25 (6): 1021–1036. doi:10.1016/0021-8502(94)90199-6. ISSN 0021-8502. 
  16. Liquid drop emitter
  17. Kamisuki, S.; Hagata, T.; Tezuka, C.; Nose, Y.; Fujii, M.; Atobe, M. (1998). Proceedings MEMS 98. IEEE. Eleventh Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems (Cat. No.98CH36176). pp. 63–68. doi:10.1109/MEMSYS.1998.659730. ISBN 978-0-7803-4412-9. 
  18. Nozzle arrangent with movable ink ejection
  19. Pulsed droplet ejecting system
  20. Method and apparatus for recording with writing fluids and drop projection means therefor
  21. Bubble jet recording method and apparatus in which a heating element generates bubbles in a liquid flow path to project droplets
  22. Thermal ink jet printer
  23. 23.0 23.1 23.2 Yeates, Stephen G.; Xu, Desheng; Madec, Marie-Beatrice; Caras-Quintero, Dolores; Alamry, Khalid A.; Malandraki, Andromachi; Sanchez-Romaguera, Veronica (2014). Inkjet Technology for Digital Fabrication. pp. 87–112. doi:10.1002/9781118452943.ch4. ISBN 9781118452943. 
  24. Shirota, K.; Shioya, M.; Suga, Y.; Eida, T. (1996). Kogation of Inorganic Impurities in Bubble Jet Ink. pp. 218–219. http://www.imaging.org/IST/store/epub.cfm?abstrid=2161. 
  25. de Gans, B.-J.; Duineveld, P. C.; Schubert, U. S. (2004). "Inkjet Printing of Polymers: State of the Art and Future Developments". Advanced Materials 16 (3): 203–213. doi:10.1002/adma.200300385. ISSN 0935-9648. 
  26. Derby, Brian (2010). "Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution". Annual Review of Materials Research 40 (1): 395–414. doi:10.1146/annurev-matsci-070909-104502. ISSN 1531-7331. Bibcode2010AnRMS..40..395D. 
  27. McKinley, Gareth H.; Renardy, Michael (2011). "Wolfgang von Ohnesorge". Physics of Fluids 23 (12): 127101–127101–6. doi:10.1063/1.3663616. ISSN 1070-6631. Bibcode2011PhFl...23l7101M. https://vtechworks.lib.vt.edu/bitstream/10919/24403/1/1.3663616.pdf. 
  28. Jang, Daehwan; Kim, Dongjo; Moon, Jooho (2009). "Influence of Fluid Physical Properties on Ink-Jet Printability". Langmuir 25 (5): 2629–2635. doi:10.1021/la900059m. ISSN 0743-7463. PMID 19437746. 
  29. Cheng, Stewart Xu; Li, Tiegang; Chandra, Sanjeev (2005). "Producing molten metal droplets with a pneumatic droplet-on-demand generator". Journal of Materials Processing Technology 159 (3): 295–302. doi:10.1016/j.jmatprotec.2004.05.016. ISSN 0924-0136. 
  30. Lee, Taik-Min; Kang, Tae Goo; Yang, Jeong-Soon; Jo, Jeongdai; Kim, Kwang-Young; Choi, Byung-Oh; Kim, Dong-Soo (2008). "Drop-on-Demand Solder Droplet Jetting System for Fabricating Microstructure". IEEE Transactions on Electronics Packaging Manufacturing 31 (3): 202–210. doi:10.1109/TEPM.2008.926285. ISSN 1521-334X. 
  31. Park, Bong Kyun; Kim, Dongjo; Jeong, Sunho; Moon, Jooho; Kim, Jang Sub (2007). "Direct writing of copper conductive patterns by ink-jet printing". Thin Solid Films 515 (19): 7706–7711. doi:10.1016/j.tsf.2006.11.142. ISSN 0040-6090. Bibcode2007TSF...515.7706P. 
  32. Bidoki, S M; Nouri, J; Heidari, A A (2010). "Inkjet deposited circuit components". Journal of Micromechanics and Microengineering 20 (5): 055023. doi:10.1088/0960-1317/20/5/055023. ISSN 0960-1317. Bibcode2010JMiMi..20e5023B. 
  33. Co, Cartesian. "Argentum". http://cartesianco.com/pages/argentum. Retrieved 27 October 2017. 
  34. Wang, Tianming; Derby, Brian (2005). "Ink-Jet Printing and Sintering of PZT". Journal of the American Ceramic Society 88 (8): 2053–2058. doi:10.1111/j.1551-2916.2005.00406.x. ISSN 0002-7820. 
  35. "Ink Jet Printing of PZT Thin Films For MEMS Applications: Ingenta Connect". http://www.ingentaconnect.com/content/ist/nipdf/2008/00002008/00000002/art00112. 
  36. 36.0 36.1 Lejeune, M.; Chartier, T.; Dossou-Yovo, C.; Noguera, R. (2009). "Ink-jet printing of ceramic micro-pillar arrays". Journal of the European Ceramic Society 29 (5): 905–911. doi:10.1016/j.jeurceramsoc.2008.07.040. ISSN 0955-2219. 
  37. Kaydanova, T.; Miedaner, A.; Perkins, J.D.; Curtis, C.; Alleman, J.L.; Ginley, D.S. (2007). "Direct-write inkjet printing for fabrication of barium strontium titanate-based tunable circuits". Thin Solid Films 515 (7–8): 3820–3824. doi:10.1016/j.tsf.2006.10.009. ISSN 0040-6090. Bibcode2007TSF...515.3820K. 
  38. Keat, Yeoh Cheow; Sreekantan, Srimala; Hutagalung, Sabar Derita; Ahmad, Zainal Arifin (2007). "Fabrication of BaTiO3 thin films through ink-jet printing of TiO2 sol and soluble Ba salts". Materials Letters 61 (23–24): 4536–4539. doi:10.1016/j.matlet.2007.02.046. 
  39. Ding, Xiang; Li, Yongxiang; Wang, Dong; Yin, Qingrui (2004). "Fabrication of BaTiO3 dielectric films by direct ink-jet printing". Ceramics International 30 (7): 1885–1887. doi:10.1016/j.ceramint.2003.12.050. 
  40. Gallage, Ruwan; Matsuo, Atsushi; Fujiwara, Takeshi; Watanabe, Tomoaki; Matsushita, Nobuhiro; Yoshimura, Masahiro (2008). "On-Site Fabrication of Crystalline Cerium Oxide Films and Patterns by Ink-Jet Deposition Method at Moderate Temperatures". Journal of the American Ceramic Society 91 (7): 2083–2087. doi:10.1111/j.1551-2916.2008.02402.x. 
  41. Ainsley, C.; Reis, N.; Derby, B. (2002-08-01). "Freeform fabrication by controlled droplet deposition of powder filled melts" (in en). Journal of Materials Science 37 (15): 3155–3161. doi:10.1023/A:1016106311185. ISSN 0022-2461. Bibcode2002JMatS..37.3155A. 

Further reading





DataMelt statistical framewwork for data scientists HandWiki ads