Hexagonal tiling honeycomb

From HandWiki
Hexagonal tiling honeycomb
H3 633 FC boundary.png
Perspective projection view
within Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols {6,3,3}
t{3,6,3}
2t{6,3,6}
2t{6,3[3]}
t{3[3,3]}
Coxeter diagrams CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel branch 11.pngCDel splitcross.pngCDel branch 11.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 3g.pngCDel node g.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node h0.png
Cells {6,3} Uniform tiling 63-t0.png
Faces hexagon {6}
Edge figure triangle {3}
Vertex figure Order-3 hexagonal tiling honeycomb verf.png
tetrahedron {3,3}
Dual Order-6 tetrahedral honeycomb
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
[math]\displaystyle{ {\overline{Y}}_3 }[/math], [3,6,3]
[math]\displaystyle{ {\overline{Z}}_3 }[/math], [6,3,6]
[math]\displaystyle{ {\overline{VP}}_3 }[/math], [6,3[3]]
[math]\displaystyle{ {\overline{PP}}_3 }[/math], [3[3,3]]
Properties Regular

In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere, a surface in hyperbolic space that approaches a single ideal point at infinity.

The Schläfli symbol of the hexagonal tiling honeycomb is {6,3,3}. Since that of the hexagonal tiling is {6,3}, this honeycomb has three such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the tetrahedron is {3,3}, the vertex figure of this honeycomb is a tetrahedron. Thus, four hexagonal tilings meet at each vertex of this honeycomb, six hexagons meet at each vertex, and four edges meet at each vertex.[1]

Images

H3 363-1100.png

Viewed in perspective outside of a Poincaré disk model, the image above shows one hexagonal tiling cell within the honeycomb, and its mid-radius horosphere (the horosphere incident with edge midpoints). In this projection, the hexagons grow infinitely small towards the infinite boundary, asymptoting towards a single ideal point. It can be seen as similar to the order-3 apeirogonal tiling, {∞,3} of H2, with horocycles circumscribing vertices of apeirogonal faces.

{6,3,3} {∞,3}
633 honeycomb one cell horosphere.png Order-3 apeirogonal tiling one cell horocycle.png
One hexagonal tiling cell of the hexagonal tiling honeycomb An order-3 apeirogonal tiling with a green apeirogon and its horocycle

Symmetry constructions

Subgroup relations

It has a total of five reflectional constructions from five related Coxeter groups all with four mirrors and only the first being regular: CDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png [6,3,3], CDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png [3,6,3], CDel node.pngCDel 6.pngCDel node c1.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node.png [6,3,6], CDel branch c1.pngCDel split2.pngCDel node c1.pngCDel 6.pngCDel node.png [6,3[3]] and [3[3,3]] CDel branch c1.pngCDel splitcross.pngCDel branch c1.png, having 1, 4, 6, 12 and 24 times larger fundamental domains respectively. In Coxeter notation subgroup markups, they are related as: [6,(3,3)*] (remove 3 mirrors, index 24 subgroup); [3,6,3*] or [3*,6,3] (remove 2 mirrors, index 6 subgroup); [1+,6,3,6,1+] (remove two orthogonal mirrors, index 4 subgroup); all of these are isomorphic to [3[3,3]]. The ringed Coxeter diagrams are CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png, CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png and CDel branch 11.pngCDel splitcross.pngCDel branch 11.png, representing different types (colors) of hexagonal tilings in the Wythoff construction.

Related polytopes and honeycombs

The hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.

It is one of 15 uniform paracompact honeycombs in the [6,3,3] Coxeter group, along with its dual, the order-6 tetrahedral honeycomb.

It is part of a sequence of regular polychora, which include the 5-cell {3,3,3}, tesseract {4,3,3}, and 120-cell {5,3,3} of Euclidean 4-space, along with other hyperbolic honeycombs containing tetrahedral vertex figures. It is also part of a sequence of regular honeycombs of the form {6,3,p}, which are each composed of hexagonal tiling cells:

Rectified hexagonal tiling honeycomb

Rectified hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols r{6,3,3} or t1{6,3,3}
Coxeter diagrams CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
Cells {3,3} Uniform polyhedron-33-t2.png
r{6,3} 40px or Uniform tiling 333-t12.png
Faces triangle {3}
hexagon {6}
Vertex figure Rectified order-3 hexagonal tiling honeycomb verf.png
triangular prism
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
[math]\displaystyle{ {\overline{P}}_3 }[/math], [3,3[3]]
Properties Vertex-transitive, edge-transitive

The rectified hexagonal tiling honeycomb, t1{6,3,3}, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png has tetrahedral and trihexagonal tiling facets, with a triangular prism vertex figure. The CDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png half-symmetry construction alternates two types of tetrahedra.

H3 633 boundary 0100.png

Hexagonal tiling honeycomb
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Rectified hexagonal tiling honeycomb
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png or CDel branch 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
Hyperbolic 3d hexagonal tiling.png Hyperbolic 3d rectified hexagonal tiling.png
Related H2 tilings
Order-3 apeirogonal tiling
CDel node 1.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.png
Triapeirogonal tiling
CDel node.pngCDel infin.pngCDel node 1.pngCDel 3.pngCDel node.png or CDel labelinfin.pngCDel branch 11.pngCDel split2.pngCDel node.png
H2-I-3-dual.svg H2 tiling 23i-2.pngH2 tiling 33i-3.png

Truncated hexagonal tiling honeycomb

Truncated hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t{6,3,3} or t0,1{6,3,3}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Cells {3,3} Uniform polyhedron-33-t2.png
t{6,3} Uniform tiling 63-t01.png
Faces triangle {3}
dodecagon {12}
Vertex figure Truncated order-3 hexagonal tiling honeycomb verf.png
triangular pyramid
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The truncated hexagonal tiling honeycomb, t0,1{6,3,3}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png has tetrahedral and truncated hexagonal tiling facets, with a triangular pyramid vertex figure.

H3 633-1100.png

It is similar to the 2D hyperbolic truncated order-3 apeirogonal tiling, t{∞,3} with apeirogonal and triangle faces:

H2 tiling 23i-3.png

Bitruncated hexagonal tiling honeycomb

Bitruncated hexagonal tiling honeycomb
Bitruncated order-6 tetrahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol 2t{6,3,3} or t1,2{6,3,3}
Coxeter diagram CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel branch 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel node h0.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells t{3,3} Uniform polyhedron-33-t01.png
t{3,6} Uniform tiling 63-t12.png
Faces triangle {3}
hexagon {6}
Vertex figure Bitruncated order-3 hexagonal tiling honeycomb verf.png
digonal disphenoid
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
[math]\displaystyle{ {\overline{P}}_3 }[/math], [3,3[3]]
Properties Vertex-transitive

The bitruncated hexagonal tiling honeycomb or bitruncated order-6 tetrahedral honeycomb, t1,2{6,3,3}, CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png has truncated tetrahedron and hexagonal tiling cells, with a digonal disphenoid vertex figure.

H3 633-0110.png

Cantellated hexagonal tiling honeycomb

Cantellated hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol rr{6,3,3} or t0,2{6,3,3}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells r{3,3} Uniform polyhedron-33-t1.png
rr{6,3} 40px
{}×{3} Triangular prism.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Cantellated order-3 hexagonal tiling honeycomb verf.png
wedge
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The cantellated hexagonal tiling honeycomb, t0,2{6,3,3}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png has octahedron, rhombitrihexagonal tiling, and triangular prism cells, with a wedge vertex figure.

H3 633-1010.png

Cantitruncated hexagonal tiling honeycomb

Cantitruncated hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol tr{6,3,3} or t0,1,2{6,3,3}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells t{3,3} Uniform polyhedron-33-t01.png
tr{6,3} 40px
{}×{3} Triangular prism.png
Faces triangle {3}
square {4}
hexagon {6}
dodecagon {12}
Vertex figure Cantitruncated order-3 hexagonal tiling honeycomb verf.png
mirrored sphenoid
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The cantitruncated hexagonal tiling honeycomb, t0,1,2{6,3,3}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png has truncated tetrahedron, truncated trihexagonal tiling, and triangular prism cells, with a mirrored sphenoid vertex figure.

H3 633-1110.png

Runcinated hexagonal tiling honeycomb

Runcinated hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,3{6,3,3}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells {3,3} Uniform polyhedron-33-t0.png
{6,3} 40px
{}×{6}40px
{}×{3} Triangular prism.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Runcinated order-3 hexagonal tiling honeycomb verf.png
irregular triangular antiprism
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The runcinated hexagonal tiling honeycomb, t0,3{6,3,3}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png has tetrahedron, hexagonal tiling, hexagonal prism, and triangular prism cells, with an irregular triangular antiprism vertex figure.

H3 633-1001.png

Runcitruncated hexagonal tiling honeycomb

Runcitruncated hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,3{6,3,3}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells rr{3,3} Uniform polyhedron-33-t02.png
{}x{3} 40px
{}x{12} 40px
t{6,3} Uniform tiling 63-t01.png
Faces triangle {3}
square {4}
dodecagon {12}
Vertex figure Runcitruncated order-3 hexagonal tiling honeycomb verf.png
isosceles-trapezoidal pyramid
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The runcitruncated hexagonal tiling honeycomb, t0,1,3{6,3,3}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png has cuboctahedron, triangular prism, dodecagonal prism, and truncated hexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.

H3 633-1101.png

Runcicantellated hexagonal tiling honeycomb

Runcicantellated hexagonal tiling honeycomb
runcitruncated order-6 tetrahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,2,3{6,3,3}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells t{3,3} Uniform polyhedron-33-t12.png
{}x{6} 40px
rr{6,3} Uniform tiling 63-t02.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Runcitruncated order-6 tetrahedral honeycomb verf.png
isosceles-trapezoidal pyramid
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The runcicantellated hexagonal tiling honeycomb or runcitruncated order-6 tetrahedral honeycomb, t0,2,3{6,3,3}, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png has truncated tetrahedron, hexagonal prism, and rhombitrihexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.

H3 633-1011.png

Omnitruncated hexagonal tiling honeycomb

Omnitruncated hexagonal tiling honeycomb
Omnitruncated order-6 tetrahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,2,3{6,3,3}
Coxeter diagram CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells tr{3,3} Uniform polyhedron-33-t012.png
{}x{6} 40px
{}x{12} 40px
tr{6,3} Uniform tiling 63-t012.svg
Faces square {4}
hexagon {6}
dodecagon {12}
Vertex figure Omnitruncated order-3 hexagonal tiling honeycomb verf.png
irregular tetrahedron
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The omnitruncated hexagonal tiling honeycomb or omnitruncated order-6 tetrahedral honeycomb, t0,1,2,3{6,3,3}, CDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png has truncated octahedron, hexagonal prism, dodecagonal prism, and truncated trihexagonal tiling cells, with an irregular tetrahedron vertex figure.

H3 633-1111.png

See also

References

  1. Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III
  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN:0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN:0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space ) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN:0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)
  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, The size of a hyperbolic Coxeter simplex, Transformation Groups (1999), Volume 4, Issue 4, pp 329–353 [1] [2]
  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, Commensurability classes of hyperbolic Coxeter groups, (2002) H3: p130. [3]

External links