Truncated hexagonal tiling

From HandWiki

In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex.

As the name implies this tiling is constructed by a truncation operation applies to a hexagonal tiling, leaving dodecagons in place of the original hexagons, and new triangles at the original vertex locations. It is given an extended Schläfli symbol of t{6,3}.

Conway calls it a truncated hextille, constructed as a truncation operation applied to a hexagonal tiling (hextille).

There are 3 regular and 8 semiregular tilings in the plane.

Uniform colorings

There is only one uniform coloring of a truncated hexagonal tiling. (Naming the colors by indices around a vertex: 122.)

Uniform polyhedron-63-t01.png

Topologically identical tilings

The dodecagonal faces can be distorted into different geometries, such as:

Truncated hexagonal tiling0.png Gyrated truncated hexagonal tiling.png
Gyrated truncated hexagonal tiling3.png Gyrated truncated hexagonal tiling2.png

Related polyhedra and tilings

A truncated hexagonal tiling can be contracted in one dimension, reducing dodecagons into decagons. Contracting in second direction reduces decagons into octagons. Contracting a third time make the trihexagonal tiling.

Wythoff constructions from hexagonal and triangular tilings

Like the uniform polyhedra there are eight uniform tilings that can be based from the regular hexagonal tiling (or the dual triangular tiling).

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 8 forms, 7 which are topologically distinct. (The truncated triangular tiling is topologically identical to the hexagonal tiling.)


Symmetry mutations

This tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and [n,3] Coxeter group symmetry.


Related 2-uniform tilings

Two 2-uniform tilings are related by dissected the dodecagons into a central hexagonal and 6 surrounding triangles and squares.[1][2]

1-uniform Dissection 2-uniform dissections
1-uniform n4.svg
(3.122)
Regular dodecagon.svgHexagonal cupola flat.svg 2-uniform n8.svg
(3.4.6.4) & (33.42)
2-uniform n9.svg
(3.4.6.4) & (32.4.3.4)
Dual Tilings

O

Inset Variations of Dual Uniform Tiling.svg

to DB

to DC

Circle packing

The truncated hexagonal tiling can be used as a circle packing, placing equal diameter circles at the center of every point.[3] Every circle is in contact with 3 other circles in the packing (kissing number). This is the lowest density packing that can be created from a uniform tiling.

1-uniform-4-circlepack.svg

Triakis triangular tiling

Triakis triangular tiling
Tiling truncated 6 dual simple.svg
TypeDual semiregular tiling
Facestriangle
Coxeter diagramCDel node.pngCDel 3.pngCDel node f1.pngCDel 6.pngCDel node f1.png
Symmetry groupp6m, [6,3], (*632)
Rotation groupp6, [6,3]+, (632)
Dual polyhedronTruncated hexagonal tiling
Face configurationV3.12.12
Tiling truncated 6 dual face.svg
Propertiesface-transitive
On painted porcelain, China

The triakis triangular tiling is a tiling of the Euclidean plane. It is an equilateral triangular tiling with each triangle divided into three obtuse triangles (angles 30-30-120) from the center point. It is labeled by face configuration V3.12.12 because each isosceles triangle face has two types of vertices: one with 3 triangles, and two with 12 triangles.

Conway calls it a kisdeltille,[4] constructed as a kis operation applied to a triangular tiling (deltille).

In Japan the pattern is called asanoha for hemp leaf, although the name also applies to other triakis shapes like the triakis icosahedron and triakis octahedron.[5]

It is the dual tessellation of the truncated hexagonal tiling which has one triangle and two dodecagons at each vertex.[6]

P4 dual.png

It is one of eight edge tessellations, tessellations generated by reflections across each edge of a prototile.[7]

Related duals to uniform tilings

It is one of 7 dual uniform tilings in hexagonal symmetry, including the regular duals.

See also

  • Tilings of regular polygons
  • List of uniform tilings

References

  1. Chavey, D. (1989). "Tilings by Regular Polygons—II: A Catalog of Tilings". Computers & Mathematics with Applications 17: 147–165. doi:10.1016/0898-1221(89)90156-9. https://www.beloit.edu/computerscience/faculty/chavey/catalog/. 
  2. "Uniform Tilings". http://www.uwgb.edu/dutchs/symmetry/uniftil.htm. 
  3. Order in Space: A design source book, Keith Critchlow, p.74-75, pattern G
  4. John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 "A K Peters, LTD. - the Symmetries of Things". http://www.akpeters.com/product.asp?ProdCode=2205.  (Chapter 21, Naming Archimedean and Catalan polyhedra and tilings, p288 table)
  5. Inose, Mikio. "mikworks.com : Original Work : Asanoha". http://www.mikworks.com/originalwork/asanoha/. 
  6. Weisstein, Eric W.. "Dual tessellation". http://mathworld.wolfram.com/DualTessellation.html. 
  7. Kirby, Matthew; Umble, Ronald (2011), "Edge tessellations and stamp folding puzzles", Mathematics Magazine 84 (4): 283–289, doi:10.4169/math.mag.84.4.283 .
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 [1]
  • Grünbaum, Branko; Shephard, G. C. (1987). Tilings and Patterns. New York: W. H. Freeman. ISBN 0-7167-1193-1. https://archive.org/details/isbn_0716711931.  (Chapter 2.1: Regular and uniform tilings, p. 58-65)
  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. p. 39. ISBN 0-486-23729-X. 
  • Keith Critchlow, Order in Space: A design source book, 1970, p. 69-61, Pattern E, Dual p. 77-76, pattern 1
  • Dale Seymour and Jill Britton, Introduction to Tessellations, 1989, ISBN 978-0866514613, pp. 50–56, dual p. 117

External links