K-set (geometry)
In discrete geometry, a [math]\displaystyle{ k }[/math]-set of a finite point set [math]\displaystyle{ S }[/math] in the Euclidean plane is a subset of [math]\displaystyle{ k }[/math] elements of [math]\displaystyle{ S }[/math] that can be strictly separated from the remaining points by a line. More generally, in Euclidean space of higher dimensions, a [math]\displaystyle{ k }[/math]-set of a finite point set is a subset of [math]\displaystyle{ k }[/math] elements that can be separated from the remaining points by a hyperplane. In particular, when [math]\displaystyle{ k=n/2 }[/math] (where [math]\displaystyle{ n }[/math] is the size of [math]\displaystyle{ S }[/math]), the line or hyperplane that separates a [math]\displaystyle{ k }[/math]-set from the rest of [math]\displaystyle{ S }[/math] is a halving line or halving plane.
The [math]\displaystyle{ k }[/math]-sets of a set of points in the plane are related by projective duality to the [math]\displaystyle{ k }[/math]-levels in an arrangement of lines. The [math]\displaystyle{ k }[/math]-level in an arrangement of [math]\displaystyle{ n }[/math] lines in the plane is the curve consisting of the points that lie on one of the lines and have exactly [math]\displaystyle{ k }[/math] lines below them. Discrete and computational geometers have also studied levels in arrangements of more general kinds of curves and surfaces.[1]
Combinatorial bounds
Unsolved problem in mathematics: What is the largest possible number of halving lines for a set of [math]\displaystyle{ n }[/math] points in the plane? (more unsolved problems in mathematics)
|
It is of importance in the analysis of geometric algorithms to bound the number of [math]\displaystyle{ k }[/math]-sets of a planar point set,[2] or equivalently the number of [math]\displaystyle{ k }[/math]-levels of a planar line arrangement, a problem first studied by Lovász[3] and Erdős et al.[4] The best known upper bound for this problem is [math]\displaystyle{ O(nk^{1/3}) }[/math], as was shown by Tamal Dey[5] using the crossing number inequality of Ajtai, Chvátal, Newborn, and Szemerédi. However, the best known lower bound is far from Dey's upper bound: it is [math]\displaystyle{ \Omega(nc^{\sqrt{\log k}}) }[/math] for some constant [math]\displaystyle{ c }[/math], as shown by Tóth.[6]
In three dimensions, the best upper bound known is [math]\displaystyle{ O(nk^{3/2}) }[/math], and the best lower bound known is [math]\displaystyle{ \Omega(nkc^{\sqrt{\log k}}) }[/math].[7] For points in three dimensions that are in convex position, that is, are the vertices of some convex polytope, the number of [math]\displaystyle{ k }[/math]-sets is [math]\displaystyle{ \Theta\bigl((n-k)k\bigr) }[/math], which follows from arguments used for bounding the complexity of [math]\displaystyle{ k }[/math]th order Voronoi diagrams.[8]
For the case when [math]\displaystyle{ k=n/2 }[/math] (halving lines), the maximum number of combinatorially distinct lines through two points of [math]\displaystyle{ S }[/math] that bisect the remaining points when [math]\displaystyle{ k=1,2,\dots }[/math] is
Bounds have also been proven on the number of [math]\displaystyle{ \le k }[/math]-sets, where a [math]\displaystyle{ \le k }[/math]-set is a [math]\displaystyle{ j }[/math]-set for some [math]\displaystyle{ j\le k }[/math]. In two dimensions, the maximum number of [math]\displaystyle{ \le k }[/math]-sets is exactly [math]\displaystyle{ nk }[/math],[9] while in [math]\displaystyle{ d }[/math] dimensions the bound is [math]\displaystyle{ O(n^{\lfloor d/2\rfloor}k^{\lceil d/2\rceil}) }[/math].[10]
Construction algorithms
Edelsbrunner and Welzl[11] first studied the problem of constructing all [math]\displaystyle{ k }[/math]-sets of an input point set, or dually of constructing the [math]\displaystyle{ k }[/math]-level of an arrangement. The [math]\displaystyle{ k }[/math]-level version of their algorithm can be viewed as a plane sweep algorithm that constructs the level in left-to-right order. Viewed in terms of [math]\displaystyle{ k }[/math]-sets of point sets, their algorithm maintains a dynamic convex hull for the points on each side of a separating line, repeatedly finds a bitangent of these two hulls, and moves each of the two points of tangency to the opposite hull. Chan[12] surveys subsequent results on this problem, and shows that it can be solved in time proportional to Dey's [math]\displaystyle{ O(nk^{1/3}) }[/math] bound on the complexity of the [math]\displaystyle{ k }[/math]-level.
Agarwal and Matoušek describe algorithms for efficiently constructing an approximate level; that is, a curve that passes between the [math]\displaystyle{ (k-\delta) }[/math]-level and the [math]\displaystyle{ (k+\delta) }[/math]-level for some small approximation parameter [math]\displaystyle{ \delta }[/math]. They show that such an approximation can be found, consisting of a number of line segments that depends only on [math]\displaystyle{ n/\delta }[/math] and not on [math]\displaystyle{ n }[/math] or [math]\displaystyle{ k }[/math].[13]
Matroid generalizations
The planar [math]\displaystyle{ k }[/math]-level problem can be generalized to one of parametric optimization in a matroid: one is given a matroid in which each element is weighted by a linear function of a parameter [math]\displaystyle{ \lambda }[/math], and must find the minimum weight basis of the matroid for each possible value of [math]\displaystyle{ \lambda }[/math]. If one graphs the weight functions as lines in a plane, the [math]\displaystyle{ k }[/math]-level of the arrangement of these lines graphs as a function of [math]\displaystyle{ \lambda }[/math] the weight of the largest element in an optimal basis in a uniform matroid, and Dey showed that his [math]\displaystyle{ O(nk^{1/3}) }[/math] bound on the complexity of the [math]\displaystyle{ k }[/math]-level could be generalized to count the number of distinct optimal bases of any matroid with [math]\displaystyle{ n }[/math] elements and rank [math]\displaystyle{ k }[/math].
For instance, the same [math]\displaystyle{ O(nk^{1/3}) }[/math] upper bound holds for counting the number of different minimum spanning trees formed in a graph with [math]\displaystyle{ n }[/math] edges and [math]\displaystyle{ k }[/math] vertices, when the edges have weights that vary linearly with a parameter [math]\displaystyle{ \lambda }[/math]. This parametric minimum spanning tree problem has been studied by various authors and can be used to solve other bicriterion spanning tree optimization problems.[14]
However, the best known lower bound for the parametric minimum spanning tree problem is [math]\displaystyle{ \Omega(n\log k) }[/math], a weaker bound than that for the [math]\displaystyle{ k }[/math]-set problem.[15] For more general matroids, Dey's [math]\displaystyle{ O(nk^{1/3}) }[/math] upper bound has a matching lower bound.[16]
Notes
- ↑ (Agarwal Aronov); (Chan 2003); (Chan 2005a); (Chan 2005b).
- ↑ (Chazelle Preparata); (Cole Sharir); (Edelsbrunner Welzl).
- ↑ Lovász 1971.
- ↑ Erdős et al. 1973.
- ↑ Dey 1998.
- ↑ Tóth 2001.
- ↑ Sharir, Smorodinsky & Tardos 2001.
- ↑ (Lee 1982); (Clarkson Shor).
- ↑ Alon & Győri 1986.
- ↑ Clarkson & Shor 1989.
- ↑ Edelsbrunner & Welzl 1986.
- ↑ Chan 1999.
- ↑ (Agarwal 1990); (Matoušek 1990); (Matoušek 1991).
- ↑ (Gusfield 1980); (Ishii Shiode); (Katoh Ibaraki); (Hassin Tamir); (Fernández-Baca Slutzki); (Chan 2005c).
- ↑ Eppstein 2022.
- ↑ Eppstein 1998.
References
- "Partitioning arrangements of lines I: An efficient deterministic algorithm". Discrete & Computational Geometry 5 (1): 449–483. 1990. doi:10.1007/BF02187805.
- "On levels in arrangements of lines, segments, planes, and triangles". 1997. pp. 30–38.
- "The number of small semi-spaces of a finite set of points in the plane". Journal of Combinatorial Theory. Series A 41: 154–157. 1986. doi:10.1016/0097-3165(86)90122-6.
- Chan, T. M. (1999). "Remarks on k-level algorithms in the plane". http://www.cs.uwaterloo.ca/~tmchan/lev2d_7_7_99.ps.gz.
- "On levels in arrangements of curves". Discrete & Computational Geometry 29 (3): 375–393. 2003. doi:10.1007/s00454-002-2840-2.
- "On levels in arrangements of curves, II: a simple inequality and its consequence". Discrete & Computational Geometry 34: 11–24. 2005a. doi:10.1007/s00454-005-1165-3.
- "On levels in arrangements of surfaces in three dimensions". 2005b. pp. 232–240. http://www.cs.uwaterloo.ca/~tmchan/surf_soda.ps.
- "Finding the shortest bottleneck edge in a parametric minimum spanning tree". 2005c. pp. 232–240. http://www.cs.uwaterloo.ca/~tmchan/bottle_soda.ps.
- "Halfspace range search: an algorithmic application of k-sets". Discrete & Computational Geometry 1 (1): 83–93. 1986. doi:10.1007/BF02187685.
- "Applications of random sampling, II". Discrete & Computational Geometry 4: 387–421. 1989. doi:10.1007/BF02187740.
- Cole, R. (1987). "On k-hulls and related problems". SIAM Journal on Computing 16 (1): 61–77. doi:10.1137/0216005.
- "Improved bounds for planar k-sets and related problems". Discrete & Computational Geometry 19 (3): 373–382. 1998. doi:10.1007/PL00009354.
- "Constructing belts in two-dimensional arrangements with applications". SIAM Journal on Computing 15 (1): 271–284. 1986. doi:10.1137/0215019.
- "Geometric lower bounds for parametric matroid optimization". Discrete & Computational Geometry 20 (4): 463–476. 1998. doi:10.1007/PL00009396. http://www.ics.uci.edu/~eppstein/pubs/Epp-DCG-98.pdf.
- Eppstein, David (August 2022). "A stronger lower bound on parametric minimum spanning trees". Algorithmica. doi:10.1007/s00453-022-01024-9.
- "Dissection graphs of planar point sets". Amsterdam: North-Holland. 1973. pp. 139–149.
- "Using sparsification for parametric minimum spanning tree problems". Nordic Journal of Computing 3 (4): 352–366. 1996.
- Gusfield, D. (1980). Sensitivity analysis for combinatorial optimization. Tech. Rep. UCB/ERL M80/22. University of California, Berkeley.
- Hassin, R.; Tamir, A. (1989). "Maximizing classes of two-parametric objectives over matroids". Mathematics of Operations Research 14 (2): 362–375. doi:10.1287/moor.14.2.362.
- Ishii, H.; Shiode, S.; Nishida, T. (1981). "Stochastic spanning tree problem". Discrete Applied Mathematics 3 (4): 263–273. doi:10.1016/0166-218X(81)90004-4.
- . Working Paper 71. Inst. Econ. Res., Kobe Univ. of Commerce. 1983.
- "On k-nearest neighbor Voronoi diagrams in the plane". IEEE Transactions on Computers 31 (6): 478–487. 1982. doi:10.1109/TC.1982.1676031.
- "On the number of halving lines". Annales Universitatis Scientiarum Budapestinensis de Rolando Eőtvős Nominatae Sectio Mathematica 14: 107–108. 1971.
- "Construction of ε-nets". Discrete & Computational Geometry 5 (5): 427–448. 1990. doi:10.1007/BF02187804.
- "Approximate levels in line arrangements". SIAM Journal on Computing 20 (2): 222–227. 1991. doi:10.1137/0220013.
- "An improved bound for k-sets in three dimensions". Discrete & Computational Geometry 26 (2): 195–204. 2001. doi:10.1007/s00454-001-0005-3.
- Tóth, G. (2001). "Point sets with many k-sets". Discrete & Computational Geometry 26 (2): 187–194. doi:10.1007/s004540010022.
External links
Original source: https://en.wikipedia.org/wiki/K-set (geometry).
Read more |