List of small groups

From HandWiki
Short description: none

The following list in mathematics contains the finite groups of small order up to group isomorphism.

Counts

For n = 1, 2, … the number of nonisomorphic groups of order n is

1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, ... (sequence A000001 in the OEIS)

For labeled groups, see OEISA034383.

Glossary

Each group is named by Small Groups library as Goi, where o is the order of the group, and i is the index used to label the group within that order.

Common group names:

  • Zn: the cyclic group of order n (the notation Cn is also used; it is isomorphic to the additive group of Z/nZ)
  • Dihn: the dihedral group of order 2n (often the notation Dn or D2n is used)
  • D2n: the dihedral group of order 2n, the same as Dihn (notation used in section List of small non-abelian groups)
  • Sn: the symmetric group of degree n, containing the n! permutations of n elements
  • An: the alternating group of degree n, containing the even permutations of n elements, of order 1 for n = 0, 1, and order n!/2 otherwise
  • Dicn or Q4n: the dicyclic group of order 4n

The notations Zn and Dihn have the advantage that point groups in three dimensions Cn and Dn do not have the same notation. There are more isometry groups than these two, of the same abstract group type.

The notation G × H denotes the direct product of the two groups; Gn denotes the direct product of a group with itself n times. GH denotes a semidirect product where H acts on G; this may also depend on the choice of action of H on G.

Abelian and simple groups are noted. (For groups of order n < 60, the simple groups are precisely the cyclic groups Zn, for prime n.) The equality sign ("=") denotes isomorphism.

The identity element in the cycle graphs is represented by the black circle. The lowest order for which the cycle graph does not uniquely represent a group is order 16.

In the lists of subgroups, the trivial group and the group itself are not listed. Where there are several isomorphic subgroups, the number of such subgroups is indicated in parentheses.

Angle brackets <relations> show the presentation of a group.

List of small abelian groups

The finite abelian groups are either cyclic groups, or direct products thereof; see Abelian group. The numbers of nonisomorphic abelian groups of orders n = 1, 2, ... are

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, ... (sequence A000688 in the OEIS)

For labeled abelian groups, see OEISA034382.

List of all abelian groups up to order 31
Order Id.[lower-alpha 1] Goi Group Non-trivial proper subgroups[1] Cycle
graph
Properties
1 1 G11 Z1 = S1 = A2 GroupDiagramMiniC1.svg Trivial. Cyclic. Alternating. Symmetric. Elementary.
2 2 G21 Z2 = S2 = D2 GroupDiagramMiniC2.svg Simple. Symmetric. Cyclic. Elementary. (Smallest non-trivial group.)
3 3 G31 Z3 = A3 GroupDiagramMiniC3.svg Simple. Alternating. Cyclic. Elementary.
4 4 G41 Z4 = Dic1 Z2 GroupDiagramMiniC4.svg Cyclic.
5 G42 Z22 = K4 = D4 Z2 (3) GroupDiagramMiniD4.svg Elementary. Product. (Klein four-group. The smallest non-cyclic group.)
5 6 G51 Z5 GroupDiagramMiniC5.svg Simple. Cyclic. Elementary.
6 8 G62 Z6 = Z3 × Z2[2] Z3, Z2 GroupDiagramMiniC6.svg Cyclic. Product.
7 9 G71 Z7 GroupDiagramMiniC7.svg Simple. Cyclic. Elementary.
8 10 G81 Z8 Z4, Z2 GroupDiagramMiniC8.svg Cyclic.
11 G82 Z4 × Z2 Z22, Z4 (2), Z2 (3) GroupDiagramMiniC2C4.svg Product.
14 G85 Z23 Z22 (7), Z2 (7) GroupDiagramMiniC2x3.svg Product. Elementary. (The non-identity elements correspond to the points in the Fano plane, the Z2 × Z2 subgroups to the lines.)
9 15 G91 Z9 Z3 GroupDiagramMiniC9.svg Cyclic.
16 G92 Z32 Z3 (4) GroupDiagramMiniC3x2.svg Elementary. Product.
10 18 G102 Z10 = Z5 × Z2 Z5, Z2 GroupDiagramMiniC10.svg Cyclic. Product.
11 19 G111 Z11 GroupDiagramMiniC11.svg Simple. Cyclic. Elementary.
12 21 G122 Z12 = Z4 × Z3 Z6, Z4, Z3, Z2 GroupDiagramMiniC12.svg Cyclic. Product.
24 G125 Z6 × Z2 = Z3 × Z22 Z6 (3), Z3, Z2 (3), Z22 GroupDiagramMiniC2C6.svg Product.
13 25 G131 Z13 GroupDiagramMiniC13.svg Simple. Cyclic. Elementary.
14 27 G142 Z14 = Z7 × Z2 Z7, Z2 GroupDiagramMiniC14.svg Cyclic. Product.
15 28 G151 Z15 = Z5 × Z3 Z5, Z3 GroupDiagramMiniC15.svg Cyclic. Product.
16 29 G161 Z16 Z8, Z4, Z2 GroupDiagramMiniC16.svg Cyclic.
30 G162 Z42 Z2 (3), Z4 (6), Z22, Z4 × Z2 (3) GroupDiagramMiniC4x2.svg Product.
33 G165 Z8 × Z2 Z2 (3), Z4 (2), Z22, Z8 (2), Z4 × Z2 GroupDiagramC2C8.svg Product.
38 G1610 Z4 × Z22 Z2 (7), Z4 (4), Z22 (7), Z23, Z4 × Z2 (6) GroupDiagramMiniC2x2C4.svg Product.
42 G1614 Z24 = K42 Z2 (15), Z22 (35), Z23 (15) GroupDiagramMiniC2x4.svg Product. Elementary.
17 43 G171 Z17 GroupDiagramMiniC17.svg Simple. Cyclic. Elementary.
18 45 G182 Z18 = Z9 × Z2 Z9, Z6, Z3, Z2 GroupDiagramMiniC18.svg Cyclic. Product.
48 G185 Z6 × Z3 = Z32 × Z2 Z2, Z3 (4), Z6 (4), Z32 GroupDiagramMiniC3C6.png Product.
19 49 G191 Z19 GroupDiagramMiniC19.svg Simple. Cyclic. Elementary.
20 51 G202 Z20 = Z5 × Z4 Z10, Z5, Z4, Z2 GroupDiagramMiniC20.svg Cyclic. Product.
54 G205 Z10 × Z2 = Z5 × Z22 Z2 (3), K4, Z5, Z10 (3) GroupDiagramMiniC2C10.png Product.
21 56 G212 Z21 = Z7 × Z3 Z7, Z3 GroupDiagramMiniC21.svg Cyclic. Product.
22 58 G222 Z22 = Z11 × Z2 Z11, Z2 GroupDiagramMiniC22.svg Cyclic. Product.
23 59 G231 Z23 GroupDiagramMiniC23.svg Simple. Cyclic. Elementary.
24 61 G242 Z24 = Z8 × Z3 Z12, Z8, Z6, Z4, Z3, Z2 GroupDiagramMiniC24.svg Cyclic. Product.
68 G249 Z12 × Z2 = Z6 × Z4 =
Z4 × Z3 × Z2
Z12, Z6, Z4, Z3, Z2 Product.
74 G2415 Z6 × Z22 = Z3 × Z23 Z6, Z3, Z2 Product.
25 75 G251 Z25 Z5 Cyclic.
76 G252 Z52 Z5 Product. Elementary.
26 78 G262 Z26 = Z13 × Z2 Z13, Z2 Cyclic. Product.
27 79 G271 Z27 Z9, Z3 Cyclic.
80 G272 Z9 × Z3 Z9, Z3 Product.
83 G275 Z33 Z3 Product. Elementary.
28 85 G282 Z28 = Z7 × Z4 Z14, Z7, Z4, Z2 Cyclic. Product.
87 G284 Z14 × Z2 = Z7 × Z22 Z14, Z7, Z4, Z2 Product.
29 88 G291 Z29 Simple. Cyclic. Elementary.
30 92 G304 Z30 = Z15 × Z2 = Z10 × Z3 =
Z6 × Z5 = Z5 × Z3 × Z2
Z15, Z10, Z6, Z5, Z3, Z2 Cyclic. Product.
31 93 G311 Z31 Simple. Cyclic. Elementary.

List of small non-abelian groups

The numbers of non-abelian groups, by order, are counted by (sequence A060689 in the OEIS). However, many orders have no non-abelian groups. The orders for which a non-abelian group exists are

6, 8, 10, 12, 14, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 34, 36, 38, 39, 40, 42, 44, 46, 48, 50, ... (sequence A060652 in the OEIS)
List of all nonabelian groups up to order 31
Order Id.[lower-alpha 1] Goi Group Non-trivial proper subgroups[1] Cycle
graph
Properties
6 7 G61 D6 = S3 = Z3 ⋊ Z2 Z3, Z2 (3) GroupDiagramMiniD6.svg Dihedral group, Dih3, the smallest non-abelian group, symmetric group, smallest Frobenius group.
8 12 G83 D8 Z4, Z22 (2), Z2 (5) GroupDiagramMiniD8.svg Dihedral group, Dih4. Extraspecial group. Nilpotent.
13 G84 Q8 Z4 (3), Z2 GroupDiagramMiniQ8.svg Quaternion group, Hamiltonian group (all subgroups are normal without the group being abelian). The smallest group G demonstrating that for a normal subgroup H the quotient group G/H need not be isomorphic to a subgroup of G. Extraspecial group. Dic2,[3] Binary dihedral group <2,2,2>.[4] Nilpotent.
10 17 G101 D10 Z5, Z2 (5) GroupDiagramMiniD10.svg Dihedral group, Dih5, Frobenius group.
12 20 G121 Q12 = Z3 ⋊ Z4 Z2, Z3, Z4 (3), Z6 GroupDiagramMiniX12.svg Dicyclic group Dic3, Binary dihedral group, <3,2,2>[4]
22 G123 A4 = K4 ⋊ Z3 = (Z2 × Z2) ⋊ Z3 Z22, Z3 (4), Z2 (3) GroupDiagramMiniA4.svg Alternating group. No subgroups of order 6, although 6 divides its order. Smallest Frobenius group that is not a dihedral group.
Chiral tetrahedral symmetry (T)
23 G124 D12 = D6 × Z2 Z6, D6 (2), Z22 (3), Z3, Z2 (7) GroupDiagramMiniD12.svg Dihedral group, Dih6, product.
14 26 G141 D14 Z7, Z2 (7) GroupDiagramMiniD14.svg Dihedral group, Dih7, Frobenius group
16[5] 31 G163 G4,4 = K4 ⋊ Z4 Z23, Z4 × Z2 (2), Z4 (4), Z22 (7), Z2 (7) GroupDiagramMiniG44.svg Has the same number of elements of every order as the Pauli group. Nilpotent.
32 G164 Z4 ⋊ Z4 Z22 × Z2 (3), Z4 (6), Z22, Z2 (3) GroupDiagramMinix3.svg The squares of elements do not form a subgroup. Has the same number of elements of every order as Q8 × Z2. Nilpotent.
34 G166 Z8 ⋊ Z2 Z8 (2), Z22 × Z2, Z4 (2), Z22, Z2 (3) GroupDiagramMOD16.svg Sometimes called the modular group of order 16, though this is misleading as abelian groups and Q8 × Z2 are also modular. Nilpotent.
35 G167 D16 Z8, D8 (2), Z22 (4), Z4, Z2 (9) GroupDiagramMiniD16.svg Dihedral group, Dih8. Nilpotent.
36 G168 QD16 Z8, Q8, D8, Z4 (3), Z22 (2), Z2 (5) GroupDiagramMiniQH16.svg The order 16 quasidihedral group. Nilpotent.
37 G169 Q16 Z8, Q8 (2), Z4 (5), Z2 GroupDiagramMiniQ16.svg Generalized quaternion group, Dicyclic group Dic4, binary dihedral group, <4,2,2>.[4] Nilpotent.
39 G1611 D8 × Z2 D8 (4), Z4 × Z2, Z23 (2), Z22 (13), Z4 (2), Z2 (11) GroupDiagramMiniC2D8.svg Product. Nilpotent.
40 G1612 Q8 × Z2 Q8 (4), Z22 × Z2 (3), Z4 (6), Z22, Z2 (3) GroupDiagramMiniC2Q8.svg Hamiltonian group, product. Nilpotent.
41 G1613 (Z4 × Z2) ⋊ Z2 Q8, D8 (3), Z4 × Z2 (3), Z4 (4), Z22 (3), Z2 (7) GroupDiagramMiniC2x2C4.svg The Pauli group generated by the Pauli matrices. Nilpotent.
18 44 G181 D18 Z9, D6 (3), Z3, Z2 (9) GroupDiagramMiniD18.png Dihedral group, Dih9, Frobenius group.
46 G183 Z3 ⋊ Z6 = D6 × Z3 = S3 × Z3 Z32, D6, Z6 (3), Z3 (4), Z2 (3) GroupDiagramMiniC3D6.png Product.
47 G184 (Z3 × Z3) ⋊ Z2 Z32, D6 (12), Z3 (4), Z2 (9) GroupDiagramMiniG18-4.png Frobenius group.
20 50 G201 Q20 Z10, Z5, Z4 (5), Z2 GroupDiagramMiniQ20.png Dicyclic group Dic5, Binary dihedral group, <5,2,2>.[4]
52 G203 Z5 ⋊ Z4 D10, Z5, Z4 (5), Z2 (5) GroupDiagramMiniC5semiprodC4.png Frobenius group.
53 G204 D20 = D10 × Z2 Z10, D10 (2), Z5, Z22 (5), Z2 (11) GroupDiagramMiniD20.png Dihedral group, Dih10, product.
21 55 G211 Z7 ⋊ Z3 Z7, Z3 (7) Frob21 cycle graph.svg Smallest non-abelian group of odd order. Frobenius group.
22 57 G221 D22 Z11, Z2 (11) Dihedral group Dih11, Frobenius group.
24 60 G241 Z3 ⋊ Z8 Z12, Z8 (3), Z6, Z4, Z3, Z2 Cycle graph Z3xiZ8.svg Central extension of S3.
62 G243 SL(2,3) = Q8 ⋊ Z3 Q8, Z6 (4), Z4 (3), Z3 (4), Z2 SL(2,3); Cycle graph.svg Binary tetrahedral group, 2T = <3,3,2>.[4]
63 G244 Q24 = Z3 ⋊ Q8 Z12, Q12 (2), Q8 (3), Z6, Z4 (7), Z3, Z2 GroupDiagramMiniQ24.png Dicyclic group Dic6, Binary dihedral, <6,2,2>.[4]
64 G245 D6 × Z4 = S3 × Z4 Z12, D12, Q12, Z4 × Z2 (3), Z6, D6 (2), Z4 (4), Z22 (3), Z3, Z2 (7) Product.
65 G246 D24 Z12, D12 (2), D8 (3), Z6, D6 (4), Z4, Z22 (6), Z3, Z2 (13) Dihedral group, Dih12.
66 G247 Q12 × Z2 = Z2 × (Z3 ⋊ Z4) Z6 × Z2, Q12 (2), Z4 × Z2 (3), Z6 (3), Z4 (6), Z22, Z3, Z2 (3) Product.
67 G248 (Z6 × Z2) ⋊ Z2 = Z3 ⋊ Dih4 Z6 × Z2, D12, Q12, D8 (3), Z6 (3), D6 (2), Z4 (3), Z22 (4), Z3, Z2 (9) Double cover of dihedral group.
69 G2410 D8 × Z3 Z12, Z6 × Z2 (2), D8, Z6 (5), Z4, Z22 (2), Z3, Z2 (5) Product. Nilpotent.
70 G2411 Q8 × Z3 Z12 (3), Q8, Z6, Z4 (3), Z3, Z2 Product. Nilpotent.
71 G2412 S4 A4, D8 (3), D6 (4), Z4 (3), Z22 (4), Z3 (4), Z2 (9)[6] Symmetric group 4; cycle graph.svg Symmetric group. Has no normal Sylow subgroups. Chiral octahedral symmetry (O), Achiral tetrahedral symmetry (Td)
72 G2413 A4 × Z2 A4, Z23, Z6 (4), Z22 (7), Z3 (4), Z2 (7) GroupDiagramMiniA4xC2.png Product. Pyritohedral symmetry (Th)
73 G2414 D12 × Z2 Z6 × Z2, D12 (6), Z23 (3), Z6 (3), D6 (4), Z22 (19), Z3, Z2 (15) Product.
26 77 G261 D26 Z13, Z2 (13) Dihedral group, Dih13, Frobenius group.
27 81 G273 Z32 ⋊ Z3 Z32 (4), Z3 (13) All non-trivial elements have order 3. Extraspecial group. Nilpotent.
82 G274 Z9 ⋊ Z3 Z9 (3), Z32, Z3 (4) Extraspecial group. Nilpotent.
28 84 G281 Z7 ⋊ Z4 Z14, Z7, Z4 (7), Z2 Dicyclic group Dic7, Binary dihedral group, <7,2,2>.[4]
86 G283 D28 = D14 × Z2 Z14, D14 (2), Z7, Z22 (7), Z2 (9) Dihedral group, Dih14, product.
30 89 G301 D6 × Z5 Z15, Z10 (3), D6, Z5, Z3, Z2 (3) Product.
90 G302 D10 × Z3 Z15, D10, Z6 (5), Z5, Z3, Z2 (5) Product.
91 G303 D30 Z15, D10 (3), D6 (5), Z5, Z3, Z2 (15) Dihedral group, Dih15, Frobenius group.

Classifying groups of small order

Small groups of prime power order pn are given as follows:

  • Order p: The only group is cyclic.
  • Order p2: There are just two groups, both abelian.
  • Order p3: There are three abelian groups, and two non-abelian groups. One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p2 by a cyclic group of order p. The other is the quaternion group for p = 2 and a group of exponent p for p > 2.
  • Order p4: The classification is complicated, and gets much harder as the exponent of p increases.

Most groups of small order have a Sylow p subgroup P with a normal p-complement N for some prime p dividing the order, so can be classified in terms of the possible primes p, p-groups P, groups N, and actions of P on N. In some sense this reduces the classification of these groups to the classification of p-groups. Some of the small groups that do not have a normal p-complement include:

  • Order 24: The symmetric group S4
  • Order 48: The binary octahedral group and the product S4 × Z2
  • Order 60: The alternating group A5.

The smallest order for which it is not known how many nonisomorphic groups there are is 2048 = 211.[7]

Small Groups Library

The GAP computer algebra system contains a package called the "Small Groups library," which provides access to descriptions of small order groups. The groups are listed up to isomorphism. At present, the library contains the following groups:[8]

  • those of order at most 2000[9] except for order 1024 (423164062 groups in the library; the ones of order 1024 had to be skipped, as there are additional 49487367289 nonisomorphic 2-groups of order 1024[10]);
  • those of cubefree order at most 50000 (395 703 groups);
  • those of squarefree order;
  • those of order pn for n at most 6 and p prime;
  • those of order p7 for p = 3, 5, 7, 11 (907 489 groups);
  • those of order pqn where qn divides 28, 36, 55 or 74 and p is an arbitrary prime which differs from q;
  • those whose orders factorise into at most 3 primes (not necessarily distinct).

It contains explicit descriptions of the available groups in computer readable format.

The smallest order for which the Small Groups library does not have information is 1024.

See also

Notes

  1. 1.0 1.1 Identifier when groups are numbered by order, o, then by index, i, from the small groups library, starting at 1.
  1. 1.0 1.1 Dockchitser, Tim. "Group Names". https://people.maths.bris.ac.uk/~matyd/GroupNames/. 
  2. See a worked example showing the isomorphism Z6 = Z3 × Z2.
  3. Chen, Jing; Tang, Lang (2020). "The Commuting Graphs on Dicyclic Groups". Algebra Colloquium 27 (4): 799–806. doi:10.1142/S1005386720000668. ISSN 1005-3867. 
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 Coxeter, H. S. M. (1957). Generators and relations for discrete groups. Berlin: Springer. doi:10.1007/978-3-662-25739-5. ISBN 978-3-662-23654-3. "<l,m,n>: Rl=Sm=Tn=RST" :
  5. Wild, Marcel (2005). "The Groups of Order Sixteen Made Easy". Am. Math. Mon. 112 (1): 20–31. doi:10.1080/00029890.2005.11920164. http://math.sun.ac.za/~wild/Marcel%20Wild%20-%20Home%20Page_files/Groups16AMM.pdf. 
  6. "Subgroup structure of symmetric group:S4 - Groupprops". https://groupprops.subwiki.org/wiki/Subgroup_structure_of_symmetric_group:S4. 
  7. Eick, Bettina; Horn, Max; Hulpke, Alexander (2018). Constructing groups of Small Order: Recent results and open problems. Springer. pp. 199–211. doi:10.1007/978-3-319-70566-8_8. ISBN 978-3-319-70566-8. https://www.quendi.de/data/papers/EHH2018-small-groups.pdf. 
  8. Hans Ulrich Besche The Small Groups library
  9. "Numbers of isomorphism types of finite groups of given order" (in en). http://www.icm.tu-bs.de/ag_algebra/software/small/number.html. 
  10. Burrell, David (2021-12-08). "On the number of groups of order 1024". Communications in Algebra 50 (6): 2408-2410. doi:10.1080/00927872.2021.2006680. https://www.tandfonline.com/doi/full/10.1080/00927872.2021.2006680. 

References

  • Coxeter, H. S. M.; Moser, W. O. J. (1980). Generators and Relations for Discrete Groups. New York: Springer-Verlag. ISBN 0-387-09212-9. , Table 1, Nonabelian groups order<32.
  • Hall, Jr., Marshall; Senior, James K. (1964). "The Groups of Order 2n (n ≤ 6)". MathSciNet (Macmillan).  A catalog of the 340 groups of order dividing 64 with tables of defining relations, constants, and lattice of subgroups of each group.

External links