Hexagonal tiling honeycomb

From HandWiki
Hexagonal tiling honeycomb
H3 633 FC boundary.png
Perspective projection view
within Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols {6,3,3}
t{3,6,3}
2t{6,3,6}
2t{6,3[3]}
t{3[3,3]}
Coxeter diagrams
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Cells {6,3} Uniform tiling 63-t0.png
Faces hexagon {6}
Edge figure triangle {3}
Vertex figure Order-3 hexagonal tiling honeycomb verf.png
tetrahedron {3,3}
Dual Order-6 tetrahedral honeycomb
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
[math]\displaystyle{ {\overline{Y}}_3 }[/math], [3,6,3]
[math]\displaystyle{ {\overline{Z}}_3 }[/math], [6,3,6]
[math]\displaystyle{ {\overline{VP}}_3 }[/math], [6,3[3]]
[math]\displaystyle{ {\overline{PP}}_3 }[/math], [3[3,3]]
Properties Regular

In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere, a surface in hyperbolic space that approaches a single ideal point at infinity.

The Schläfli symbol of the hexagonal tiling honeycomb is {6,3,3}. Since that of the hexagonal tiling is {6,3}, this honeycomb has three such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the tetrahedron is {3,3}, the vertex figure of this honeycomb is a tetrahedron. Thus, four hexagonal tilings meet at each vertex of this honeycomb, six hexagons meet at each vertex, and four edges meet at each vertex.[1]

Images

H3 363-1100.png

Viewed in perspective outside of a Poincaré disk model, the image above shows one hexagonal tiling cell within the honeycomb, and its mid-radius horosphere (the horosphere incident with edge midpoints). In this projection, the hexagons grow infinitely small towards the infinite boundary, asymptoting towards a single ideal point. It can be seen as similar to the order-3 apeirogonal tiling, {∞,3} of H2, with horocycles circumscribing vertices of apeirogonal faces.

{6,3,3} {∞,3}
633 honeycomb one cell horosphere.png Order-3 apeirogonal tiling one cell horocycle.png
One hexagonal tiling cell of the hexagonal tiling honeycomb An order-3 apeirogonal tiling with a green apeirogon and its horocycle

Symmetry constructions

Subgroup relations

It has a total of five reflectional constructions from five related Coxeter groups all with four mirrors and only the first being regular:

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

[6,3,3],

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

[3,6,3],

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

[6,3,6],

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

[6,3[3]] and [3[3,3]]

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

, having 1, 4, 6, 12 and 24 times larger fundamental domains respectively. In Coxeter notation subgroup markups, they are related as: [6,(3,3)*] (remove 3 mirrors, index 24 subgroup); [3,6,3*] or [3*,6,3] (remove 2 mirrors, index 6 subgroup); [1+,6,3,6,1+] (remove two orthogonal mirrors, index 4 subgroup); all of these are isomorphic to [3[3,3]]. The ringed Coxeter diagrams are

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

,

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

,

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

,

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

and

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

, representing different types (colors) of hexagonal tilings in the Wythoff construction.

Related polytopes and honeycombs

The hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.

It is one of 15 uniform paracompact honeycombs in the [6,3,3] Coxeter group, along with its dual, the order-6 tetrahedral honeycomb.

It is part of a sequence of regular polychora, which include the 5-cell {3,3,3}, tesseract {4,3,3}, and 120-cell {5,3,3} of Euclidean 4-space, along with other hyperbolic honeycombs containing tetrahedral vertex figures. It is also part of a sequence of regular honeycombs of the form {6,3,p}, which are each composed of hexagonal tiling cells:

Rectified hexagonal tiling honeycomb

Rectified hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols r{6,3,3} or t1{6,3,3}
Coxeter diagrams
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Cells {3,3} Uniform polyhedron-33-t2.png
r{6,3} 40px or Uniform tiling 333-t12.png
Faces triangle {3}
hexagon {6}
Vertex figure Rectified order-3 hexagonal tiling honeycomb verf.png
triangular prism
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
[math]\displaystyle{ {\overline{P}}_3 }[/math], [3,3[3]]
Properties Vertex-transitive, edge-transitive

The rectified hexagonal tiling honeycomb, t1{6,3,3},

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

has tetrahedral and trihexagonal tiling facets, with a triangular prism vertex figure. The

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

half-symmetry construction alternates two types of tetrahedra.

H3 633 boundary 0100.png

Hexagonal tiling honeycomb
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Rectified hexagonal tiling honeycomb
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
or
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Hyperbolic 3d hexagonal tiling.png Hyperbolic 3d rectified hexagonal tiling.png
Related H2 tilings
Order-3 apeirogonal tiling
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Triapeirogonal tiling
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
or
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
H2-I-3-dual.svg H2 tiling 23i-2.pngH2 tiling 33i-3.png

Truncated hexagonal tiling honeycomb

Truncated hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t{6,3,3} or t0,1{6,3,3}
Coxeter diagram
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Cells {3,3} Uniform polyhedron-33-t2.png
t{6,3} Uniform tiling 63-t01.png
Faces triangle {3}
dodecagon {12}
Vertex figure Truncated order-3 hexagonal tiling honeycomb verf.png
triangular pyramid
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The truncated hexagonal tiling honeycomb, t0,1{6,3,3},

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

has tetrahedral and truncated hexagonal tiling facets, with a triangular pyramid vertex figure.

H3 633-1100.png

It is similar to the 2D hyperbolic truncated order-3 apeirogonal tiling, t{∞,3} with apeirogonal and triangle faces:

H2 tiling 23i-3.png

Bitruncated hexagonal tiling honeycomb

Bitruncated hexagonal tiling honeycomb
Bitruncated order-6 tetrahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol 2t{6,3,3} or t1,2{6,3,3}
Coxeter diagram
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Cells t{3,3} Uniform polyhedron-33-t01.png
t{3,6} Uniform tiling 63-t12.png
Faces triangle {3}
hexagon {6}
Vertex figure Bitruncated order-3 hexagonal tiling honeycomb verf.png
digonal disphenoid
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
[math]\displaystyle{ {\overline{P}}_3 }[/math], [3,3[3]]
Properties Vertex-transitive

The bitruncated hexagonal tiling honeycomb or bitruncated order-6 tetrahedral honeycomb, t1,2{6,3,3},

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

has truncated tetrahedron and hexagonal tiling cells, with a digonal disphenoid vertex figure.

H3 633-0110.png

Cantellated hexagonal tiling honeycomb

Cantellated hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol rr{6,3,3} or t0,2{6,3,3}
Coxeter diagram
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Cells r{3,3} Uniform polyhedron-33-t1.png
rr{6,3} 40px
{}×{3} Triangular prism.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Cantellated order-3 hexagonal tiling honeycomb verf.png
wedge
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The cantellated hexagonal tiling honeycomb, t0,2{6,3,3},

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

has octahedron, rhombitrihexagonal tiling, and triangular prism cells, with a wedge vertex figure.

H3 633-1010.png

Cantitruncated hexagonal tiling honeycomb

Cantitruncated hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol tr{6,3,3} or t0,1,2{6,3,3}
Coxeter diagram
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Cells t{3,3} Uniform polyhedron-33-t01.png
tr{6,3} 40px
{}×{3} Triangular prism.png
Faces triangle {3}
square {4}
hexagon {6}
dodecagon {12}
Vertex figure Cantitruncated order-3 hexagonal tiling honeycomb verf.png
mirrored sphenoid
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The cantitruncated hexagonal tiling honeycomb, t0,1,2{6,3,3},

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

has truncated tetrahedron, truncated trihexagonal tiling, and triangular prism cells, with a mirrored sphenoid vertex figure.

H3 633-1110.png

Runcinated hexagonal tiling honeycomb

Runcinated hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,3{6,3,3}
Coxeter diagram
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Cells {3,3} Uniform polyhedron-33-t0.png
{6,3} 40px
{}×{6}40px
{}×{3} Triangular prism.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Runcinated order-3 hexagonal tiling honeycomb verf.png
irregular triangular antiprism
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The runcinated hexagonal tiling honeycomb, t0,3{6,3,3},

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

has tetrahedron, hexagonal tiling, hexagonal prism, and triangular prism cells, with an irregular triangular antiprism vertex figure.

H3 633-1001.png

Runcitruncated hexagonal tiling honeycomb

Runcitruncated hexagonal tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,3{6,3,3}
Coxeter diagram
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Cells rr{3,3} Uniform polyhedron-33-t02.png
{}x{3} 40px
{}x{12} 40px
t{6,3} Uniform tiling 63-t01.png
Faces triangle {3}
square {4}
dodecagon {12}
Vertex figure Runcitruncated order-3 hexagonal tiling honeycomb verf.png
isosceles-trapezoidal pyramid
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The runcitruncated hexagonal tiling honeycomb, t0,1,3{6,3,3},

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

has cuboctahedron, triangular prism, dodecagonal prism, and truncated hexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.

H3 633-1101.png

Runcicantellated hexagonal tiling honeycomb

Runcicantellated hexagonal tiling honeycomb
runcitruncated order-6 tetrahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,2,3{6,3,3}
Coxeter diagram
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Cells t{3,3} Uniform polyhedron-33-t12.png
{}x{6} 40px
rr{6,3} Uniform tiling 63-t02.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Runcitruncated order-6 tetrahedral honeycomb verf.png
isosceles-trapezoidal pyramid
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The runcicantellated hexagonal tiling honeycomb or runcitruncated order-6 tetrahedral honeycomb, t0,2,3{6,3,3},

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

has truncated tetrahedron, hexagonal prism, and rhombitrihexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.

H3 633-1011.png

Omnitruncated hexagonal tiling honeycomb

Omnitruncated hexagonal tiling honeycomb
Omnitruncated order-6 tetrahedral honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,2,3{6,3,3}
Coxeter diagram
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Cells tr{3,3} Uniform polyhedron-33-t012.png
{}x{6} 40px
{}x{12} 40px
tr{6,3} Uniform tiling 63-t012.svg
Faces square {4}
hexagon {6}
dodecagon {12}
Vertex figure Omnitruncated order-3 hexagonal tiling honeycomb verf.png
irregular tetrahedron
Coxeter groups [math]\displaystyle{ {\overline{V}}_3 }[/math], [3,3,6]
Properties Vertex-transitive

The omnitruncated hexagonal tiling honeycomb or omnitruncated order-6 tetrahedral honeycomb, t0,1,2,3{6,3,3},

Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination
Error creating thumbnail: Unable to save thumbnail to destination

has truncated octahedron, hexagonal prism, dodecagonal prism, and truncated trihexagonal tiling cells, with an irregular tetrahedron vertex figure.

H3 633-1111.png

See also

References

  1. Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III
  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN:0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN:0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space ) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN:0-8247-0709-5 (Chapters 16–17: Geometries on Three-manifolds I,II)
  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, The size of a hyperbolic Coxeter simplex, Transformation Groups (1999), Volume 4, Issue 4, pp 329–353 [1] [2]
  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, Commensurability classes of hyperbolic Coxeter groups, (2002) H3: p130. [3]

External links