Order-6 cubic honeycomb

From HandWiki
(Redirected from Order-3-6 square honeycomb)
Order-6 cubic honeycomb
H3 436 CC center.png
Perspective projection view
within Poincaré disk model
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbol {4,3,6}
{4,3[3]}
Coxeter diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
CDel node 1.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes 11.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 6.pngCDel node.png
Cells {4,3} Hexahedron.png
Faces square {4}
Edge figure hexagon {6}
Vertex figure Uniform tiling 63-t2.png 80px
triangular tiling
Coxeter group [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
[math]\displaystyle{ \overline{BP}_3 }[/math], [4,3[3]]
Dual Order-4 hexagonal tiling honeycomb
Properties Regular, quasiregular

The order-6 cubic honeycomb is a paracompact regular space-filling tessellation (or honeycomb) in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of facets, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,6}, the honeycomb has six ideal cubes meeting along each edge. Its vertex figure is an infinite triangular tiling. Its dual is the order-4 hexagonal tiling honeycomb.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Images

Order-6 cubic honeycomb cell.png
One cell viewed outside of the Poincaré sphere model
H2 tiling 24i-4.png
The order-6 cubic honeycomb is analogous to the 2D hyperbolic infinite-order square tiling, {4,∞} with square faces. All vertices are on the ideal surface.

Symmetry

A half-symmetry construction of the order-6 cubic honeycomb exists as {4,3[3]}, with two alternating types (colors) of cubic cells. This construction has Coxeter-Dynkin diagram CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png.

Another lower-symmetry construction, [4,3*,6], of index 6, exists with a non-simplex fundamental domain, with Coxeter-Dynkin diagram CDel node 1.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes 11.png.

This honeycomb contains CDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node 1.png that tile 2-hypercycle surfaces, similar to the paracompact order-3 apeirogonal tiling, CDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node 1.png:

H2-I-3-dual.svg

Related polytopes and honeycombs

The order-6 cubic honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact.

It has a related alternation honeycomb, represented by CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png. This alternated form has hexagonal tiling and tetrahedron cells.

There are fifteen uniform honeycombs in the [6,3,4] Coxeter group family, including the order-6 cubic honeycomb itself.

The order-6 cubic honeycomb is part of a sequence of regular polychora and honeycombs with cubic cells.

It is also part of a sequence of honeycombs with triangular tiling vertex figures.

Rectified order-6 cubic honeycomb

Rectified order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols r{4,3,6} or t1{4,3,6}
Coxeter diagrams CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
CDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node 1.pngCDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
Cells r{3,4} Uniform polyhedron-43-t1.png
{3,6} Uniform tiling 63-t2.png
Faces triangle {3}
square {4}
Vertex figure Rectified order-6 cubic honeycomb verf.png
hexagonal prism
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
[math]\displaystyle{ \overline{DV}_3 }[/math], [6,31,1]
[math]\displaystyle{ \overline{BP}_3 }[/math], [4,3[3]]
[math]\displaystyle{ \overline{DP}_3 }[/math], [3[]×[]]
Properties Vertex-transitive, edge-transitive

The rectified order-6 cubic honeycomb, r{4,3,6}, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png has cuboctahedral and triangular tiling facets, with a hexagonal prism vertex figure.

H3 436 CC center 0100.png

It is similar to the 2D hyperbolic tetraapeirogonal tiling, r{4,∞}, CDel node.pngCDel 4.pngCDel node 1.pngCDel infin.pngCDel node.png alternating apeirogonal and square faces:

H2 tiling 24i-2.png

Truncated order-6 cubic honeycomb

Truncated order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t{4,3,6} or t0,1{4,3,6}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.png
Cells t{4,3} Uniform polyhedron-43-t01.png
{3,6} Uniform tiling 63-t2.png
Faces triangle {3}
octagon {8}
Vertex figure Truncated order-6 cubic honeycomb verf.png
hexagonal pyramid
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
[math]\displaystyle{ \overline{BP}_3 }[/math], [4,3[3]]
Properties Vertex-transitive

The truncated order-6 cubic honeycomb, t{4,3,6}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png has truncated cube and triangular tiling facets, with a hexagonal pyramid vertex figure.

H3 634-0011.png

It is similar to the 2D hyperbolic truncated infinite-order square tiling, t{4,∞}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel infin.pngCDel node.png with apeirogonal and octagonal (truncated square) faces:

H2 tiling 24i-6.png

Bitruncated order-6 cubic honeycomb

The bitruncated order-6 cubic honeycomb is the same as the bitruncated order-4 hexagonal tiling honeycomb.

Cantellated order-6 cubic honeycomb

Cantellated order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols rr{4,3,6} or t0,2{4,3,6}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.png
Cells rr{4,3} Uniform polyhedron-43-t02.png
r{3,6} 40px
{}x{6} Hexagonal prism.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Cantellated order-6 cubic honeycomb verf.png
wedge
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
[math]\displaystyle{ \overline{BP}_3 }[/math], [4,3[3]]
Properties Vertex-transitive

The cantellated order-6 cubic honeycomb, rr{4,3,6}, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png has rhombicuboctahedron, trihexagonal tiling, and hexagonal prism facets, with a wedge vertex figure.

H3 634-0101.png

Cantitruncated order-6 cubic honeycomb

Cantitruncated order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols tr{4,3,6} or t0,1,2{4,3,6}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.png
Cells tr{4,3} Uniform polyhedron-43-t012.png
t{3,6} 40px
{}x{6} Hexagonal prism.png
Faces square {4}
hexagon {6}
octagon {8}
Vertex figure Cantitruncated order-6 cubic honeycomb verf.png
mirrored sphenoid
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
[math]\displaystyle{ \overline{BP}_3 }[/math], [4,3[3]]
Properties Vertex-transitive

The cantitruncated order-6 cubic honeycomb, tr{4,3,6}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png has truncated cuboctahedron, hexagonal tiling, and hexagonal prism facets, with a mirrored sphenoid vertex figure.

H3 634-0111.png

Runcinated order-6 cubic honeycomb

The runcinated order-6 cubic honeycomb is the same as the runcinated order-4 hexagonal tiling honeycomb.

Runcitruncated order-6 cubic honeycomb

Cantellated order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t0,1,3{4,3,6}
Coxeter diagrams CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png
Cells t{4,3} Uniform polyhedron-43-t01.png
rr{3,6} 40px
{}x{6} 40px
{}x{8} Octagonal prism.png
Faces triangle {3}
square {4}
hexagon {6}
octagon {8}
Vertex figure Runcitruncated order-6 cubic honeycomb verf.png
isosceles-trapezoidal pyramid
Coxeter groups [math]\displaystyle{ \overline{BV}_3 }[/math], [4,3,6]
Properties Vertex-transitive

The runcitruncated order-6 cubic honeycomb, rr{4,3,6}, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png has truncated cube, rhombitrihexagonal tiling, hexagonal prism, and octagonal prism facets, with an isosceles-trapezoidal pyramid vertex figure.

H3 634-1011.png

Runcicantellated order-6 cubic honeycomb

The runcicantellated order-6 cubic honeycomb is the same as the runcitruncated order-4 hexagonal tiling honeycomb.

Omnitruncated order-6 cubic honeycomb

The omnitruncated order-6 cubic honeycomb is the same as the omnitruncated order-4 hexagonal tiling honeycomb.

Alternated order-6 cubic honeycomb

Alternated order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Semiregular honeycomb
Schläfli symbol h{4,3,6}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node 1.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png
CDel node h.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes hh.pngCDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 6.pngCDel node.png
Cells {3,3} Tetrahedron.png
{3,6} Uniform tiling 63-t2.png
Faces triangle {3}
Vertex figure Uniform tiling 63-t1.png
trihexagonal tiling
Coxeter group [math]\displaystyle{ \overline{DV}_3 }[/math], [6,31,1]
[math]\displaystyle{ \overline{DP}_3 }[/math], [3[]x[]]
Properties Vertex-transitive, edge-transitive, quasiregular

In three-dimensional hyperbolic geometry, the alternated order-6 hexagonal tiling honeycomb is a uniform compact space-filling tessellation (or honeycomb). As an alternation, with Schläfli symbol h{4,3,6} and Coxeter-Dynkin diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png or CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png, it can be considered a quasiregular honeycomb, alternating triangular tilings and tetrahedra around each vertex in a trihexagonal tiling vertex figure.

Symmetry

A half-symmetry construction from the form {4,3[3]} exists, with two alternating types (colors) of triangular tiling cells. This form has Coxeter-Dynkin diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h0.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png. Another lower-symmetry form of index 6, [4,3*,6], exists with a non-simplex fundamental domain, with Coxeter-Dynkin diagram CDel node h.pngCDel ultra.pngCDel node.pngCDel split1.pngCDel branch.pngCDel uaub.pngCDel nodes hh.png.

Related honeycombs

The alternated order-6 cubic honeycomb is part of a series of quasiregular polychora and honeycombs.

It also has 3 related forms: the cantic order-6 cubic honeycomb, h2{4,3,6}, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png; the runcic order-6 cubic honeycomb, h3{4,3,6}, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.png; and the runcicantic order-6 cubic honeycomb, h2,3{4,3,6}, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png.

Cantic order-6 cubic honeycomb

Cantic order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h2{4,3,6}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch 11.pngCDel node 1.pngCDel split1.pngCDel branch 11.pngCDel split2.pngCDel node.png
Cells t{3,3} Truncated tetrahedron.png
r{6,3} 40px
t{3,6} Uniform tiling 63-t12.png
Faces triangle {3}
hexagon {6}
Vertex figure Cantic order-6 cubic honeycomb verf.png
rectangular pyramid
Coxeter group [math]\displaystyle{ \overline{DV}_3 }[/math], [6,31,1]
[math]\displaystyle{ \overline{DP}_3 }[/math], [3[]x[]]
Properties Vertex-transitive

The cantic order-6 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb) with Schläfli symbol h2{4,3,6}. It is composed of truncated tetrahedron, trihexagonal tiling, and hexagonal tiling facets, with a rectangular pyramid vertex figure.

Runcic order-6 cubic honeycomb

Runcic order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h3{4,3,6}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node 1.png
Cells {3,3} Tetrahedron.png
{6,3} 40px
rr{6,3} Uniform tiling 63-t02.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Runcic order-6 cubic honeycomb verf.png
triangular cupola
Coxeter group [math]\displaystyle{ \overline{DV}_3 }[/math], [6,31,1]
Properties Vertex-transitive

The runcic order-6 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb) with Schläfli symbol h3{4,3,6}. It is composed of tetrahedron, hexagonal tiling, and rhombitrihexagonal tiling facets, with a triangular cupola vertex figure.

Runcicantic order-6 cubic honeycomb

Runcicantic order-6 cubic honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol h2,3{4,3,6}
Coxeter diagram CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node 1.png
Cells t{6,3} Uniform tiling 63-t01.png
tr{6,3} 40px
t{3,3} Uniform polyhedron-33-t01.png
Faces triangle {3}
square {4}
hexagon {6}
dodecagon {12}
Vertex figure Runcicantic order-6 cubic honeycomb verf.png
mirrored sphenoid
Coxeter group [math]\displaystyle{ \overline{DV}_3 }[/math], [6,31,1]
Properties Vertex-transitive

The runcicantic order-6 cubic honeycomb is a uniform compact space-filling tessellation (or honeycomb), with Schläfli symbol h2,3{4,3,6}. It is composed of truncated hexagonal tiling, truncated trihexagonal tiling, and truncated tetrahedron facets, with a mirrored sphenoid vertex figure.

See also

  • Convex uniform honeycombs in hyperbolic space
  • Regular tessellations of hyperbolic 3-space
  • Paracompact uniform honeycombs

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups