Physics:List of refractive indices

From HandWiki
Short description: None
Refraction at interface

Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.

There are also weaker dependencies on temperature, pressure/stress, etc., as well on precise material compositions (presence of dopants, etc.); for many materials and typical conditions, however, these variations are at the percent level or less. Thus, it's especially important to cite the source for an index measurement if precision is required.

In general, an index of refraction is a complex number with both a real and imaginary part, where the latter indicates the strength of absorption loss at a particular wavelength—thus, the imaginary part is sometimes called the extinction coefficient [math]\displaystyle{ k }[/math]. Such losses become particularly significant, for example, in metals at short (e.g. visible) wavelengths, and must be included in any description of the refractive index.

Refraction, critical angle and total internal reflection of light at the interface between two media.

List

Some representative refractive indices
Name of material λ (nm) Refractive index no. n Reference
Vacuum 1 (by definition)
Air at STP 1.000273 [citation needed]
Gases at 0 °C and 1 atm
Air 589.29 1.000293 [1]
Carbon dioxide 589.29 1.00045 [2][3][4]
Helium 589.29 1.000036 [1]
Hydrogen 589.29 1.000132 [1]
Liquids at 20 °C
Arsenic trisulfide and sulfur in methylene iodide 1.9 [5]
Carbon disulfide 589.29 1.628 [1]
Benzene 589.29 1.501 [1]
Carbon tetrachloride 589.29 1.461 [1]
Silicone oil (nD25) 589.29 1.393–1.403 [6]
Kerosene 1.39
Ethanol (ethyl alcohol) 589.29 1.361 [1]
Acetone 1.36
Water 589.29 1.333 [1]
10% glucose solution in water 589.29 1.3477 [7]
20% glucose solution in water 589.29 1.3635 [7]
60% glucose solution in water 589.29 1.4394 [7]
Solids at room temperature
Silicon carbide (moissanite; 6H form) 589.29 2.65 [8]
Titanium dioxide (rutile phase) 589.29 2.614 [9][10]
Diamond 589.29 2.417 [1]
Tantalum pentoxide 589.29 2.15 [11]
Amber 589.29 1.55 [1]
Sodium chloride 589.29 1.544 [12]
Fused silica (a pure form of glass, also called fused quartz) 589.29 1.458 [1][13]
Other materials
Liquid helium 1.025
Perfluorohexane (Fluorinert FC-72) 1.251 [14]
Water ice 1.31
TFE/PDD (Teflon AF) 1.315 [15][16]
Cryolite 1.338
Cytop 1.34 [17]
Polytetrafluoroethylene (Teflon) 1.35–1.38 [18]
Sugar solution, 25% 1.3723 [19]
Cornea (human) 1.373/1.380/1.401 [20]
Lens (human) 1.386–1.406
Liver (human) 964 1.369 [21]
Intestinal mucosa (human) 964 1.329–1.338 [22]
Ethylene tetrafluoroethylene (ETFE) 1.403 [23]
Sylgard 184 (polydimethylsiloxane) 1.4118 [24]
Sugar solution, 50% 1.4200 [19]
Polylactic acid 1.46 [25]
Vegetable oil 1.47 [26]
Glycerol 1.4729
Sugar solution, 75% 1.4774 [19]
Poly(methyl methacrylate) (PMMA) 1.4893–1.4899
Halite (rock salt) 1.516
Plate glass (window glass) 1.52

[27]

Crown glass (pure) 1.50–1.54
PETg 1.57
Polyethylene terephthalate (PET) 1.5750
Polycarbonate 150 1.60 [28]
Crown glass (impure) 1.485–1.755
Flint glass (pure) 1.60–1.62
Bromine 1.661
Flint glass (impure) 1.523–1.925
Sapphire 1.762–1.778
Boron nitride 2–2.14 [29]
Cubic zirconia 2.15–2.18 [30]
Potassium niobate (KNbO3) 2.28
Zinc oxide 390 2.4
Cinnabar (mercury sulfide) 3.02 Birefringent: nω = 2.905 nε = 3.256[31]
Silicon 1200 - 8500 3.42–3.48 [32]
Gallium(III) phosphide 3.5
Gallium(III) arsenide 3.927
Germanium 3000 - 16000 4.05–4.1 [33]

See also

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 Zajac, Alfred; Hecht, Eugene (18 March 2003). Optics, Fourth Edit. Pearson Higher Education. ISBN 978-0-321-18878-6. 
  2. Morgan, Joseph (1953). Introduction to Geometrical and Physical Optics. McGraw-Hill Book Company, INC.. https://archive.org/details/introductiontoge0000morg. 
  3. Hodgman, Charles D. (1957). Handbook of Chemistry and Physics. Chemical Rubber Publishing Co.. https://archive.org/details/handbookofchemis00hodg. 
  4. Pedrotti, Frank L.; Pedrotti, Leno M.; Pedrotti, Leno S. (2007). Introduction to Optics, Third Edition. Pearson Prentice Hall. p. 221. ISBN 978-0-13-149933-1. 
  5. Meyrowitz, R, A compilation and classification of immersion media of high index of refraction, American Mineralogist 40: 398 (1955)
  6. "Silicone Fluids: Stable and Inert Media". Gelest, Inc. 1998. http://www.gelest.com/wp-content/uploads/Goods-PDF-brochures-inert_silicones_2013.pdf. 
  7. 7.0 7.1 7.2 Lide, David R. Lide, ed (2001). CRC Handbook of Physics and Chemistry (82nd ed.). Cleveland, OH: The Chemical Rubber Company. ISBN 978-0-8493-0482-8. 
  8. "Silicon Carbide (SiC) - Optical properties". Ioffe Institute. http://www.ioffe.ru/SVA/NSM/Semicond/SiC/optic.html. 
  9. Polyanskiy, Mikhail N.. "Optical constants of TiO2 (Titanium dioxide)". Refractive Index Database. http://refractiveindex.info/?group=CRYSTALS&material=TiO2. 
  10. Shannon, Robert D.; Shannon, Ruth C.; Medenbach, Olaf; Fischer, Reinhard X. (25 October 2002). "Refractive Index and Dispersion of Fluorides and Oxides". J. Phys. Chem. Ref. Data 31 (4): 931–970. doi:10.1063/1.1497384. Bibcode2002JPCRD..31..931S. 
  11. Polyanskiy, Mikhail (2018). "Optical constants of Ta2O5 (Tantalum pentoxide)". Refractive Index Database. https://refractiveindex.info/?shelf=main&book=Ta2O5&page=Gao. 
  12. Serway, Raymond A.; Faughn, Jerry S. (2003). College Physics, 6th Edition. Brooks/Cole. p. 692. ISBN 978-0-03-035114-3. 
  13. Tan, G; Lemon, M.; Jones, D.; French, R. (2005). "Optical properties and London dispersion interaction of amorphous and crystalline {SiO2} determined by vacuum ultraviolet spectroscopy and spectroscopic ellipsometry". Physical Review B 72 (20): 205117. doi:10.1103/PhysRevB.72.205117. Bibcode2005PhRvB..72t5117T. http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/optical_properties_and_london_dispersion_interacti.pdf. Retrieved 11 July 2014. 
  14. "Fluorinert Electronic Liquid FC-72 Product Information". http://multimedia.3m.com/mws/media/64892O/fluorinert-electronic-liquid-fc-72.pdf. 
  15. "Teflon AF". http://www2.dupont.com/Teflon_Industrial/en_US/products/product_by_name/teflon_af/properties.html. 
  16. Yang, Min K. (July 2008). "Optical properties of Teflon® {AF} amorphous fluoropolymers". Journal of Micro/Nano Lithography 7 (3): 033010. doi:10.1117/1.2965541. http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/optical_properties_of_teflon_r_af_amorphous_fluo.pdf. Retrieved 11 July 2014. 
  17. "CYTOP Amorphous Fluoropolymer". AGCCE Chemicals Europe, Ltd.. http://www.agcce.eu.com/CYTOP/TechInfo.asp. 
  18. French, Roger H.; Rodriguez-Parada, J. M.; Yang, M. K. et al. (2009). "Optical properties of materials for concentrator photovoltaic systems". 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). pp. 000394–000399. doi:10.1109/PVSC.2009.5411657. ISBN 978-1-4244-2949-3. http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/optical_properties_of_materials_for_concentrator_p.pdf. Retrieved 11 July 2014. 
  19. 19.0 19.1 19.2 "Manual for Sugar Solution Prism". A/S S. Frederiksen. 2005-08-03. http://www.frederiksen.eu/fileadmin/user_upload/PDF/Export_Manuals/545920_AE_sugarsolution.pdf. 
  20. Patel, S; Marshall, J; Fitzke, FW 3rd. (Mar–Apr 1995). "Refractive index of the human corneal epithelium and stroma". J Refract Surg. 11 (2): 100–105. doi:10.3928/1081-597X-19950301-09. PMID 7634138. 
  21. Giannios, P; et, al (2016). "Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies". Sci. Rep. 6: 27910. doi:10.1038/srep27910. PMID 27297034. Bibcode2016NatSR...627910G. 
  22. Giannios, P; al, et (2016). "Complex refractive index of normal and malignant human colorectal tissue". J. Biophotonics 10 (2): 303–310. doi:10.1002/jbio.201600001. PMID 27091794. 
  23. Wright, S.F.; Zadrazil, I.; Markides, C.N. (2017). "A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows". Experiments in Fluids 58 (9): 108. doi:10.1007/s00348-017-2386-y. Bibcode2017ExFl...58..108W. 
  24. "184 Silicone Elastomer". Dow Corning. http://www1.dowcorning.com/DataFiles/090007c8803bb6a1.pdf. [yes|permanent dead link|dead link}}]
  25. Gonçalves, Carla M. B.; Coutinho, Joa˜o A. P.; Marrucho, Isabel M. (2010). "Optical Properties". Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications; Chapter 8: Optical Properties. p. 97. doi:10.1002/9780470649848.ch8. ISBN 978-0-470-64984-8. 
  26. Index Of Refraction Of Vegetable Oil, The Physics Factbook.
  27. "High temperature glass melt property database for process modeling"; Eds.: Thomas P. Seward III and Terese Vascott; The American Ceramic Society, Westerville, Ohio, 2005, ISBN:1-57498-225-7
  28. C. R. Garcia, J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, V. Gonzalez, "3D Printing of Anisotropic Metamaterials," PIER Lett, Vol. 34, pp. 75–82, 2012.
  29. "Combat Boron Nitride". Saint Gobain. http://www.bn.saint-gobain.com/uploadedFiles/SGbn/Documents/Solids/Combat-Solids-DS1.pdf. 
  30. French, Roger H.; Glass, S.; Ohuchi, F. et al. (1994). "Experimental and theoretical determination of the electronic structure and optical properties of three phases of {ZrO2}". Physical Review B 49 (8): 5133–5142. doi:10.1103/PhysRevB.49.5133. PMID 10011463. Bibcode1994PhRvB..49.5133F. http://engineering.case.edu/centers/sdle/sites/engineering.case.edu.centers.sdle/files/experimental_and_theoretical_determination_of_the_0.pdf. Retrieved 11 July 2014. 
  31. "Table of Refractive Indices and Double Refraction of Selected Gems - IGS" (in en). https://www.gemsociety.org/article/table-refractive-index-double-refraction-gems/. 
  32. "Silicon". Pmoptics.com. http://www.pmoptics.com/silicon.html. 
  33. "Germanium". Pmoptics.com. http://www.pmoptics.com/germanium.html. 

External links