Physics:Samarium-147

From HandWiki
Short description: Isotope of samarium
Samarium-147, 147Sm
General
Symbol147Sm
Namessamarium-147, Sm-147
Protons62
Neutrons85
Nuclide data
Natural abundance15.00%
Half-life1.06×1011 years
Parent isotopes147Pm (β)
151Gd (α)
Decay products143Nd
Isotope mass146.9148979(26) u
Spin7/2−
Decay modes
Decay modeDecay energy (MeV)
Isotopes of Chemistry:samarium
Complete table of nuclides

Samarium-147 (147Sm or Sm-147) is an isotope of samarium, making up 15% of natural samarium. It is an extremely long-lived radioisotope, with a half-life of 1.06×1011 years, although this can range from 1.05×1011[1] to 1.17×1011[2] years. It is mainly used in radiometric dating.[3]

Uses

Samarium-147 is used in samarium–neodymium dating. The method of isochron dating is used to find the date at which a rock (or group of rocks) are formed.[4] The Sm-Nd isochron plots the ratio of radiogenic 143Nd to non-radiogenic 144Nd against the ratio of the parent isotope 147Sm to the non-radiogenic isotope 144Nd. 144Nd is used to normalize the radiogenic isotope in the isochron because it is a slightly radioactive and relatively abundant neodymium isotope.

The Sm-Nd isochron is defined by the following equation:

[math]\displaystyle{ \left(\frac{{}^{143}\mathrm{Nd}}{{}^{144}\mathrm{Nd}}\right)_{\mathrm{present}} = \left(\frac{{}^{143}\mathrm{Nd}}{{}^{144}\mathrm{Nd}}\right)_{\mathrm{initial}} + \left(\frac{{}^{147}\mathrm{Sm}}{{}^{144}\mathrm{Nd}}\right) \cdot (e^{\lambda t}-1), }[/math]

where:

t is the age of the sample,
λ is the decay constant of 147Sm,
(eλt−1) is the slope of the isochron which defines the age of the system.

Alternatively, one can assume that the material formed from mantle material which was following the same path of evolution of these ratios as chondrites, and then again the time of formation can be calculated (see Samarium–neodymium dating).[4][5]

See also

References

  1. Wright, P. M.; Steinberg, E. P.; Glendenin, L. E. (1961-07-01). "Half-Life of Samarium-147". Physical Review 123 (1): 205–208. doi:10.1103/PhysRev.123.205. Bibcode1961PhRv..123..205W. https://link.aps.org/doi/10.1103/PhysRev.123.205. 
  2. Kinoshita, Norikazu; Yokoyama, Akihiko; Nakanishi, Takashi (2003). "Half-Life of Samarium-147". Journal of Nuclear and Radiochemical Sciences 4 (1): 5–7. doi:10.14494/jnrs2000.4.5. https://www.jstage.jst.go.jp/article/jnrs2000/4/1/4_1_5/_article/-char/ja/. 
  3. Currie, Lloyd A., ed (1982-01-29) (in en). Nuclear and Chemical Dating Techniques: Interpreting the Environmental Record. ACS Symposium Series. 176. WASHINGTON, D. C.: AMERICAN CHEMICAL SOCIETY. doi:10.1021/bk-1982-0176.ch001. ISBN 978-0-8412-0669-4. https://pubs.acs.org/doi/book/10.1021/bk-1982-0176. 
  4. 4.0 4.1 Depaolo, D. J.; Wasserburg, G. J. (1976). "Nd isotopic variations and petrogenetic models". Geophysical Research Letters 3 (5): 249. doi:10.1029/GL003i005p00249. Bibcode1976GeoRL...3..249D. https://authors.library.caltech.edu/41937/1/grl330.pdf. 
  5. McCulloch, M. T.; Wasserburg, G. J. (1978). "Sm-Nd and Rb-Sr Chronology of Continental Crust Formation". Science 200 (4345): 1003–11. doi:10.1126/science.200.4345.1003. PMID 17740673. Bibcode1978Sci...200.1003M. https://resolver.caltech.edu/CaltechAUTHORS:20131107-143832294. 


Lighter:
samarium-146
Samarium-147 is an
isotope of samarium
Heavier:
samarium-148
Decay product of:
gadolinium-151 (α)
promethium-147
(β)
Decay chain
of samarium-147
Decays to:
neodymium-143 (α)