Small stellapentakis dodecahedron

From HandWiki
Short description: Polyhedron with 60 faces


Small stellapentakis dodecahedron
DU37 small stellapentakisdodecahedron.png
Type Star polyhedron
Face DU37 facets.png
Elements F = 60, E = 90
V = 24 (χ = −6)
Symmetry group Ih, [5,3], *532
Index references DU37
dual polyhedron Truncated great dodecahedron

In geometry, the small stellapentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the truncated great dodecahedron. It has 60 intersecting triangular faces.

Proportions

The triangles have two acute angles of [math]\displaystyle{ \arccos(\frac{1}{2}+\frac{1}{5}\sqrt{5})\approx 18.699\,407\,085\,149^{\circ} }[/math] and one obtuse angle of [math]\displaystyle{ \arccos(\frac{1}{10}-\frac{2}{5}\sqrt{5})\approx 142.601\,185\,829\,70^{\circ} }[/math]. The dihedral angle equals [math]\displaystyle{ \arccos(\frac{-24-5\sqrt{5}}{41})\approx 149.099\,125\,827\,35^{\circ} }[/math]. Part of each triangle lies within the solid, hence is invisible in solid models.

References

External links