Great truncated icosidodecahedron

From HandWiki
Short description: Polyhedron with 62 faces
Great truncated icosidodecahedron
Great truncated icosidodecahedron.png
Type Uniform star polyhedron
Elements F = 62, E = 180
V = 120 (χ = 2)
Faces by sides 30{4}+20{6}+12{10/3}
Wythoff symbol 2 3 5/3 |
Symmetry group Ih, [5,3], *532
Index references U68, C87, W108
Dual polyhedron Great disdyakis triacontahedron
Vertex figure Great truncated icosidodecahedron vertfig.png
4.6.10/3
Bowers acronym Gaquatid

File:Great truncated icosidodecahedron.stl In geometry, the great truncated icosidodecahedron (or great quasitruncated icosidodecahedron or stellatruncated icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U68. It has 62 faces (30 squares, 20 hexagons, and 12 decagrams), 180 edges, and 120 vertices.[1] It is given a Schläfli symbol t0,1,2{​53,3}, and Coxeter-Dynkin diagram, CDel node 1.pngCDel 5.pngCDel rat.pngCDel d3.pngCDel node 1.pngCDel 3.pngCDel node 1.png.

Cartesian coordinates

Cartesian coordinates for the vertices of a great truncated icosidodecahedron centered at the origin are all the even permutations of [math]\displaystyle{ \begin{array}{ccclc} \Bigl(& \pm\,\varphi,& \pm\,\varphi,& \pm \bigl[3-\frac{1}{\varphi}\bigr] &\Bigr),\\ \Bigl(& \pm\,2\varphi,& \pm\,\frac{1}{\varphi},& \pm\,\frac{1}{\varphi^3} &\Bigl), \\ \Bigl(& \pm\,\varphi,& \pm\,\frac{1}{\varphi^2},& \pm \bigl[1+\frac{3}{\varphi}\bigr] &\Bigr), \\ \Bigl(& \pm\,\sqrt{5},& \pm\,2,& \pm\,\frac{\sqrt{5}}{\varphi} &\Bigr), \\ \Bigl(& \pm\,\frac{1}{\varphi},& \pm\,3,& \pm\,\frac{2}{\varphi} &\Bigr), \end{array} }[/math]

where [math]\displaystyle{ \varphi = \tfrac{1 + \sqrt 5}{2} }[/math] is the golden ratio.

Related polyhedra

Great disdyakis triacontahedron

Great disdyakis triacontahedron
DU68 great disdyakistriacontahedron.png
Type Star polyhedron
Face DU68 facets.png
Elements F = 120, E = 180
V = 62 (χ = 2)
Symmetry group Ih, [5,3], *532
Index references DU68
dual polyhedron Great truncated icosidodecahedron

File:Great disdyakis triacontahedron.stl The great disdyakis triacontahedron (or trisdyakis icosahedron) is a nonconvex isohedral polyhedron. It is the dual of the great truncated icosidodecahedron. Its faces are triangles.


Proportions

The triangles have one angle of [math]\displaystyle{ \arccos\left(\tfrac{1}{6}+\tfrac{1}{15}\sqrt{5}\right) \approx 71.594\,636\,220\,88^{\circ} }[/math], one of [math]\displaystyle{ \arccos\left(\tfrac{3}{4}+\tfrac{1}{10}\sqrt{5}\right) \approx 13.192\,999\,040\,74^{\circ} }[/math] and one of [math]\displaystyle{ \arccos\left(\tfrac{3}{8}-\tfrac{5}{24}\sqrt{5}\right) \approx 95.212\,364\,738\,38^{\circ}. }[/math] The dihedral angle equals [math]\displaystyle{ \arccos\left(\tfrac{-179+24\sqrt{5}}{241}\right) \approx 121.336\,250\,807\,39^{\circ}. }[/math] Part of each triangle lies within the solid, hence is invisible in solid models.

See also

References

External links