5G

From HandWiki
Short description: Broadband cellular network standard
5G
3GPP 5G logo.png
3GPP's 5G logo
Developed by3GPP
IntroducedJuly 2016; 8 years ago (July 2016)
IndustryTelecommunications
Superseded by6G
An Android phone, showing that it is connected to a 5G network

In telecommunications, 5G is the fifth-generation technology standard for cellular networks, which cellular phone companies began deploying worldwide in 2019, and is the successor to 4G technology that provides connectivity to most current mobile phones.

Like its predecessors, 5G networks are cellular networks, in which the service area is divided into small geographical areas called cells. All 5G wireless devices in a cell are connected to the Internet and the telephone network by radio waves through a basestation and antennae in the cell. The new networks have higher download speeds, with a peak speed of 10 gigabits per second (Gbit/s) when there is only one user in the network.[1] 5G has higher bandwidth to deliver faster speeds than 4G and can connect more devices, improving the quality of Internet services in crowded areas.[2] Due to the increased bandwidth, it is expected the 5G networks will increasingly be used as general internet service providers (ISPs), competing with existing ISPs such as cable internet, and also will make possible new applications in internet-of-things (IoT) and machine-to-machine areas. Cellphones with 4G capability alone are not able to use the 5G networks.

Overview

5G networks are cellular networks, in which the service area is divided into small geographical areas called cells. All 5G wireless devices in a cell communicate by radio waves with a cellular base station via fixed antennas, over frequencies assigned by the base station. The base stations, termed nodes, are connected to switching centers in the telephone network and routers for Internet access by high-bandwidth optical fiber or wireless backhaul connections. As in other cellular networks, a mobile device moving from one cell to another is automatically handed off seamlessly.

The industry consortium setting standards for 5G, the 3rd Generation Partnership Project (3GPP), defines "5G" as any system using 5G NR (5G New Radio) software — a definition that came into general use by late 2018.

Several network operators use millimeter waves called FR2 in 5G terminology, for additional capacity and higher throughputs. Millimeter waves have a shorter range than the lower frequency microwaves, therefore the cells are of a smaller size. Millimeter waves also have more trouble passing through building walls and humans. Millimeter-wave antennas are smaller than the large antennas used in previous cellular networks.

The increased data rate is achieved partly by using additional higher-frequency radio waves in addition to the low- and medium-band frequencies used in previous cellular networks. For providing a wide range of services, 5G networks can operate in three frequency bands — low, medium, and high.

5G can be implemented in low-band, mid-band or high-band millimeter-wave. Low-band 5G uses a similar frequency range to 4G cellphones, 600–900 MHz, which can potentially offer higher download speeds than 4G: 5–250 megabits per second (Mbit/s).[3][4] Low-band cell towers have a range and coverage area similar to 4G towers. Mid-band 5G uses microwaves of 1.7–4.7 GHz, allowing speeds of 100–900 Mbit/s, with each cell tower providing service up to several kilometers in radius. This level of service is the most widely deployed, and was deployed in many metropolitan areas in 2020. Some regions are not implementing the low band, making Mid-band the minimum service level. High-band 5G uses frequencies of 24–47 GHz, near the bottom of the millimeter wave band, although higher frequencies may be used in the future. It often achieves download speeds in the gigabit-per-second (Gbit/s) range, comparable to co-axial cable Internet service. However, millimeter waves (mmWave or mmW) have a more limited range, requiring many small cells.[5] They can be impeded or blocked by materials in walls or windows or pedestrians.[6][7] Due to their higher cost, plans are to deploy these cells only in dense urban environments and areas where crowds of people congregate such as sports stadiums and convention centers. The above speeds are those achieved in actual tests in 2020, and speeds are expected to increase during rollout.[3] The spectrum ranging from 24.25 to 29.5 GHz has been the most licensed and deployed 5G mmWave spectrum range in the world.[8]

Rollout of 5G technology has led to debate over its security and relationship with Chinese vendors. It has also been the subject of health concerns and misinformation, including discredited conspiracy theories linking it to the COVID-19 pandemic.

Application areas

The ITU-R has defined three main application areas for the enhanced capabilities of 5G. They are Enhanced Mobile Broadband (eMBB), Ultra Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC).[9] Only eMBB is deployed in 2020; URLLC and mMTC are several years away in most locations.[10]

Enhanced Mobile Broadband (eMBB) uses 5G as a progression from 4G LTE mobile broadband services, with faster connections, higher throughput, and more capacity. This will benefit areas of higher traffic such as stadiums, cities, and concert venues.[11]

'Ultra-Reliable Low-Latency Communications' (URLLC) refers to using the network for mission-critical applications that require uninterrupted and robust data exchange. Short-packet data transmission is used to meet both reliability and latency requirements of the wireless communication networks.

Massive Machine-Type Communications (mMTC) would be used to connect to a large number of devices. 5G technology will connect some of the 50 billion connected IoT devices.[12] Most will use the less expensive Wi-Fi. Drones, transmitting via 4G or 5G, will aid in disaster recovery efforts, providing real-time data for emergency responders.[12] Most cars will have a 4G or 5G cellular connection for many services. Autonomous cars do not require 5G, as they have to be able to operate where they do not have a network connection.[13] However, most autonomous vehicles also feature tele-operations for mission accomplishment, and these greatly benefit from 5G technology.[14][15]

Performance

Speed

5G is capable of delivering significantly faster data rates than 4G, with peak data rates of up to 20 gigabits per second (Gbps).[16] Furthermore, average 5G download speeds have been recorded at 186.3 Mbit/s in the U.S. by T-Mobile, while South Korea leads globally with average speeds of 432 megabits per second (Mbps).[17][18] 5G networks are also designed to provide significantly more capacity than 4G networks, with a projected 100-fold increase in network capacity and efficiency.[19]

The most widely used form of 5G, sub-6 GHz 5G (mid-band), is capable of delivering data rates ranging from 10 to 1,000 megabits per second (Mbps), with a much greater reach than mmWave bands. C-Band (n77/n78) was deployed by various U.S. operators in 2022 in the sub-6 bands, although its deployment by Verizon and AT&T was delayed until early January 2022 due to safety concerns raised by the Federal Aviation Administration.

Low-band frequencies (such as n5) offer a greater coverage area for a given cell, but their data rates are lower than those of mid and high bands in the range of 5–250 megabits per second (Mbps).[4]

Latency

In 5G, the ideal "air latency" is of the order of 8 to 12 milliseconds i.e., excluding delays due to HARQ retransmissions, handovers, etc. Retransmission latency and backhaul latency to the server must be added to the "air latency" for correct comparisons. Verizon reported the latency on its 5G early deployment is 30 ms[citation needed]. Edge Servers close to the towers can probably reduce latency to between 10 and 15 milliseconds[citation needed].

Latency is much higher during handovers; ranging from 50 to 500 milliseconds depending on the type of handover. Reducing handover interruption time is an ongoing area of research and development; options include modifying the handover margin (offset) and the time-to-trigger (TTT).

Error rate

5G uses an adaptive modulation and coding scheme (MCS) to keep the block error rate (BLER) extremely low. Whenever the error rate crosses a (very low) threshold the transmitter will switch to a lower MCS, which will be less error-prone. This way speed is sacrificed to ensure an almost zero error rate.

Range

The range of 5G depends on many factors: transmit power, frequency, and interference. For example, mmWave (e.g.:band n258) will have a lower range than mid-band (e.g.: band n78) which will have a lower range than low-band (e.g.: band n5)

Given the marketing hype on what 5G can offer, simulators and drive tests are used by cellular service providers for the precise measurement of 5G performance.

Standards

Initially, the term was associated with the International Telecommunication Union's IMT-2020 standard, which required a theoretical peak download speed of 20 gigabits per second and 10 gigabits per second upload speed, along with other requirements.[16] Then, the industry standards group 3GPP chose the 5G NR (New Radio) standard together with LTE as their proposal for submission to the IMT-2020 standard.[20][21]

5G NR can include lower frequencies (FR1), below 6 GHz, and higher frequencies (FR2), above 24 GHz. However, the speed and latency in early FR1 deployments, using 5G NR software on 4G hardware (non-standalone), are only slightly better than new 4G systems, estimated at 15 to 50% better.[22][23][24]

The standard documents are organized by 3rd Generation Partnership Project (3GPP),[25][26] with its system architecture defined in TS 23.501.[27] The packet protocol for mobility management (establishing connection and moving between base stations) and session management (connecting to networks and network slices) is described in TS 24.501.[28] Specifications of key data structures are found in TS 23.003.[29]

Fronthaul network

IEEE covers several areas of 5G with a core focus on wireline sections between the Remote Radio Head (RRH) and Base Band Unit (BBU). The 1914.1 standards focus on network architecture and dividing the connection between the RRU and BBU into two key sections. Radio Unit (RU) to the Distributor Unit (DU) being the NGFI-I (Next Generation Fronthaul Interface) and the DU to the Central Unit (CU) being the NGFI-II interface allowing a more diverse and cost-effective network. NGFI-I and NGFI-II have defined performance values which should be compiled to ensure different traffic types defined by the ITU are capable of being carried.[page needed] The IEEE 1914.3 standard is creating a new Ethernet frame format capable of carrying IQ data in a much more efficient way depending on the functional split utilized. This is based on the 3GPP definition of functional splits.[page needed]

5G NR

Main page: 5G NR

5G NR (New Radio) is the de facto air interface developed for 5G networks.[30] It is the global standard for 3GPP 5G networks.[31]

The study of NR within 3GPP started in 2015, and the first specification was made available by the end of 2017. While the 3GPP standardization process was ongoing, the industry had already begun efforts to implement infrastructure compliant with the draft standard, with the first large-scale commercial launch of 5G NR having occurred at the end of 2018. Since 2019, many operators have deployed 5G NR networks and handset manufacturers have developed 5G NR enabled handsets.[32]

5Gi

5Gi is an alternative 5G variant developed in India. It was developed in a joint collaboration between IIT Madras, IIT Hyderabad, TSDSI, and the Centre of Excellence in Wireless Technology (CEWiT)[citation needed]. 5Gi is designed to improve 5G coverage in rural and remote areas over varying geographical terrains. 5Gi uses Low Mobility Large Cell (LMLC) to extend 5G connectivity and the range of a base station.[33]

In April 2022, 5Gi was merged with the global 5G NR standard in the 3GPP Release 17 specifications.[34]

Pre-standard implementations

  • 5G TF: American carrier Verizon used a pre-standard variation of 5G known as 5G TF (Verizon 5G Technical Forum) for Fixed Wireless Access in 2018. The 5G service provided to customers in this standard is incompatible with 5G NR. Verizon has since migrated to 5G NR.[35]
  • 5G-SIG: KT Corporation had a pre-standard variation of 5G developed called 5G-SIG. This was deployed at the Pyeongchang 2018 Winter Olympics.[36]

Internet of things

In the Internet of things (IoT), 3GPP is going to submit the evolution of NB-IoT and eMTC (LTE-M) as 5G technologies for the LPWA (Low Power Wide Area) use case.[37]

Non-Terrestrial Network

Standards are being developed by 3GPP to provide access to end devices via non-terrestrial networks (NTN), i.e. satellite or airborne telecommunication equipment to allow for better coverage outside of populated or otherwise hard to reach locations.[38][39] The enhanced communication quality relies on the unique properties of Air to Ground channel.

Several manufacturers have announced and released hardware that integrates 5G with satellite networks:

  • Samsung Electronics introduced a standardized 5G NTN modem technology in Korea in February 2023,[40] simulated on their Exynos Modem 5300, facilitating smartphone-satellite communication.
  • MediaTek launched the world's first commercially available 5G IoT-NTN chipset, MT6825, capable of automatic satellite message receipt and extensive power efficiency.[41][42]
  • Qualcomm, in collaboration with Skylo, announced new satellite IoT solutions on June 22, 2023, including the Qualcomm 212S and 9205S modems, supporting the Qualcomm Aware platform for real-time asset tracking and device management.[43]
  • Motorola's Defy Satellite Link hotspot, powered by MediaTek's MT6825, became available in June 2023, providing a portable satellite messaging solution with robust battery life and built-in GPS.[44][45]
  • Rakuten Symphony, in collaboration with Supermicro, announced high-performing Open RAN technologies and storage systems for operators of cloud-based mobile services.[46]

Deployment

5G 3.5 GHz cell site of Deutsche Telekom in Darmstadt, Germany
5G 3.5 GHz cell site of Vodafone in Karlsruhe, Germany
5G equipment in Canada

Beyond mobile operator networks, 5G is also expected to be used for private networks with applications in industrial IoT, enterprise networking, and critical communications, in what being described as NR-U (5G NR in Unlicensed Spectrum)[47] and Non-Public Networks (NPNs) operating in licensed spectrum. By the mid-to-late 2020s, standalone private 5G networks are expected to become the predominant wireless communications medium to support the ongoing Industry 4.0 revolution for the digitization and automation of manufacturing and process industries.[48]

Initial 5G NR launches depended on pairing with existing LTE (4G) infrastructure in non-standalone (NSA) mode (5G NR radio with 4G core), before maturation of the standalone (SA) mode with the 5G core network.[49]

As of April 2019, the Global Mobile Suppliers Association had identified 224 operators in 88 countries that have demonstrated, are testing or trialing, or have been licensed to conduct field trials of 5G technologies, are deploying 5G networks or have announced service launches.[50] The equivalent numbers in November 2018 were 192 operators in 81 countries.[51] The first country to adopt 5G on a large scale was South Korea, in April 2019. Swedish telecoms giant Ericsson predicted that 5G internet will cover up to 65% of the world's population by the end of 2025.[52] Also, it plans to invest 1 billion reals ($238.30 million) in Brazil to add a new assembly line dedicated to fifth-generation technology (5G) for its Latin American operations.[53]

When South Korea launched its 5G network, all carriers used Samsung, Ericsson, and Nokia base stations and equipment, except for LG U Plus, who also used Huawei equipment.[54][55] Samsung was the largest supplier for 5G base stations in South Korea at launch, having shipped 53,000 base stations at the time, out of 86,000 base stations installed across the country at the time.[56]

The first fairly substantial deployments were in April 2019. In South Korea, SK Telecom claimed 38,000 base stations, KT Corporation 30,000 and LG U Plus 18,000; of which 85% are in six major cities.[57] They are using 3.5 GHz (sub-6) spectrum in non-standalone (NSA) mode and tested speeds were from 193 to 430 Mbit/s down.[58] 260,000 signed up in the first month and 4.7 million by the end of 2019.[59] T-Mobile US was the first company in the world to launch a commercially available 5G NR Standalone network.[60]

Nine companies sell 5G radio hardware and 5G systems for carriers: Altiostar, Cisco Systems, Datang Telecom/Fiberhome, Ericsson, Huawei, Nokia, Qualcomm, Samsung, and ZTE.[61][62][63][64][65][66][67] As of 2023, Huawei is the leading 5G equipment manufacturer and has the greatest market share of 5G equipment and has built approximately 70% of worldwide 5G base stations.[68](p182)

Spectrum

Large quantities of new radio spectrum (5G NR frequency bands) have been allocated to 5G.[69] For example, in July 2016, the U.S. Federal Communications Commission (FCC) freed up vast amounts of bandwidth in underused high-band spectrum for 5G. The Spectrum Frontiers Proposal (SFP) doubled the amount of millimeter-wave unlicensed spectrum to 14 GHz and created four times the amount of flexible, mobile-use spectrum the FCC had licensed to date.[70] In March 2018, European Union lawmakers agreed to open up the 3.6 and 26 GHz bands by 2020.[71]

(As of March 2019), there are reportedly 52 countries, territories, special administrative regions, disputed territories and dependencies that are formally considering introducing certain spectrum bands for terrestrial 5G services, are holding consultations regarding suitable spectrum allocations for 5G, have reserved spectrum for 5G, have announced plans to auction frequencies or have already allocated spectrum for 5G use.[72]

5G devices

The photograph shows a part of the screen of an Galaxy S10 with 5G sign
5G connectivity on a Galaxy S10

In March 2019, the Global Mobile Suppliers Association released the industry's first database tracking worldwide 5G device launches.[73] In it, the GSA identified 23 vendors who have confirmed the availability of forthcoming 5G devices with 33 different devices including regional variants. There were seven announced 5G device form factors: (telephones (×12 devices), hotspots (×4), indoor and outdoor customer-premises equipment (×8), modules (×5), Snap-on dongles and adapters (×2), and USB terminals (×1)).[74] By October 2019, the number of announced 5G devices had risen to 129, across 15 form factors, from 56 vendors.[75]

In the 5G IoT chipset arena, as of April 2019 there were four commercial 5G modem chipsets and one commercial processor/platform, with more launches expected in the near future.[76]

On March 4, 2019, the first-ever all-5G smartphone Samsung Galaxy S10 5G was released. According to Business Insider, the 5G feature was showcased as more expensive in comparison with the 4G Samsung Galaxy S10e.[77] On March 19, 2020, HMD Global, the current maker of Nokia-branded phones, announced the Nokia 8.3 5G, which it claimed as having a wider range of 5G compatibility than any other phone released to that time. The mid-range model is claimed to support all 5G bands from 600 MHz to 3.8 GHz.[78]

Many phone manufacturers support 5G. Google Pixel devices support 5G, starting with the 4a 5G and Pixel 5.[79] Apple devices also support 5G, starting with the iPhone 12 and later models.[80][81]

Technology

New radio frequencies

The air interface defined by 3GPP for 5G is known as New Radio (NR), and the specification is subdivided into two frequency bands, FR1 (below 6 GHz) and FR2 (24–54 GHz)

Frequency range 1 (< 6 GHz)

Otherwise known as sub-6, the maximum channel bandwidth defined for FR1 is 100 MHz, due to the scarcity of continuous spectrum in this crowded frequency range. The band most widely being used for 5G in this range is 3.3–4.2 GHz. The Korean carriers use the n78 band at 3.5 GHz.

Some parties used the term "mid-band" frequency to refer to higher part of this frequency range that was not used in previous generations of mobile communication.

Frequency range 2 (24–71 GHz)

The minimum channel bandwidth defined for FR2 is 50 MHz and the maximum is 400 MHz, with two-channel aggregation supported in 3GPP Release 15. Signals in this frequency range with wavelengths between 4 and 12 mm are called millimeter waves. The higher the carrier frequency, the greater the ability to support high data-transfer speeds. This is because a given channel bandwidth takes up a lower fraction of the carrier frequency, so high-bandwidth channels are easier to realize at higher carrier frequencies.

FR2 coverage

5G in the 24 GHz range or above use higher frequencies than 4G, and as a result, some 5G signals are not capable of traveling large distances (over a few hundred meters), unlike 4G or lower frequency 5G signals (sub 6 GHz). This requires placing 5G base stations every few hundred meters in order to use higher frequency bands. Also, these higher frequency 5G signals cannot penetrate solid objects easily, such as cars, trees, walls, and even humans, because of the nature of these higher frequency electromagnetic waves. 5G cells can be deliberately designed to be as inconspicuous as possible, which finds applications in places like restaurants and shopping malls.[82]

Cell types Deployment environment Max. number ​of users Output power ​(W) Max. distance from ​base station
5G NR FR2 Femtocell Homes, businesses Home: 4–8
Businesses: 16–32
indoors: 0.01–0.1
outdoors: 0.2–1
tens of meters
Pico cell Public areas like shopping malls,
airports, train stations, skyscrapers
64 to 128 indoors: 0.1–0.25
outdoors: 1–5
tens of meters
Micro cell Urban areas to fill coverage gaps 128 to 256 outdoors: 5−10 few hundreds of meters
Macro cell Urban areas to provide additional capacity more than 250 outdoors: 10−20 hundreds of meters
Wi-Fi
(for comparison)
Homes, businesses fewer than 50 indoors: 0.02–0.1
outdoors: 0.2–1
few tens of meters

Massive MIMO

MIMO systems use multiple antennas at the transmitter and receiver ends of a wireless communication system. Multiple antennas use the spatial dimension for multiplexing in addition to the time and frequency ones, without changing the bandwidth requirements of the system.

Massive MIMO (multiple-input and multiple-output) antennas increases sector throughput and capacity density using large numbers of antennas. This includes Single User MIMO and Multi-user MIMO (MU-MIMO). Each antenna is individually-controlled and may embed radio transceiver components.[citation needed]

In general, more antennas equal better performance. But more antennas also require bigger arrays that draw more power. Some of the places service providers deploy radio links have very tight constraints, so finding the right solution means weighing tradeoffs. For in-building coverage, the performance gain is often worth it. For outdoor or street-level coverage, maybe not.[83]

Edge computing

Edge computing is delivered by computing servers closer to the ultimate user. It reduces latency, data traffic congestion[84][85] and can improve service availability.[86]

Small cell

Small cells are low-powered cellular radio access nodes that operate in licensed and unlicensed spectrum that have a range of 10 meters to a few kilometers. Small cells are critical to 5G networks, as 5G's radio waves can't travel long distances, because of 5G's higher frequencies.[87][88][89][90]

Beamforming

Main page: Beamforming

There are two kinds of beamforming (BF): digital and analog. Digital beamforming involves sending the data across multiple streams (layers), while analog beamforming shaping the radio waves to point in a specific direction. The analog BF technique combines the power from elements of the antenna array in such a way that signals at particular angles experience constructive interference, while other signals pointing to other angles experience destructive interference. This improves signal quality in the specific direction, as well as data transfer speeds. 5G uses both digital and analog beamforming to improve the system capacity.[91][92]

Convergence of Wi-Fi and cellular

One expected benefit of the transition to 5G is the convergence of multiple networking functions to achieve cost, power, and complexity reductions. LTE has targeted convergence with Wi-Fi band/technology via various efforts, such as License Assisted Access (LAA; 5G signal in unlicensed frequency bands that are also used by Wi-Fi) and LTE-WLAN Aggregation (LWA; convergence with Wi-Fi Radio), but the differing capabilities of cellular and Wi-Fi have limited the scope of convergence. However, significant improvement in cellular performance specifications in 5G, combined with migration from Distributed Radio Access Network (D-RAN) to Cloud- or Centralized-RAN (C-RAN) and rollout of cellular small cells can potentially narrow the gap between Wi-Fi and cellular networks in dense and indoor deployments. Radio convergence could result in sharing ranging from the aggregation of cellular and Wi-Fi channels to the use of a single silicon device for multiple radio access technologies.[93]

NOMA (non-orthogonal multiple access)

NOMA (non-orthogonal multiple access) is a proposed multiple-access technique for future cellular systems via allocation of power.[94]

SDN/NFV

Main pages: Software-defined networking, SD-WAN, Network function virtualization, and 5G network slicing

Initially, cellular mobile communications technologies were designed in the context of providing voice services and Internet access. Today a new era of innovative tools and technologies is inclined towards developing a new pool of applications. This pool of applications consists of different domains such as the Internet of Things (IoT), web of connected autonomous vehicles, remotely controlled robots, and heterogeneous sensors connected to serve versatile applications.[95] In this context, network slicing has emerged as a key technology to efficiently embrace this new market model.[96]

Service-Based Architecture

The 5G Service-Based architecture replaces the referenced-based architecture of the Evolved Packet Core that is used in 4G. The SBA breaks up the core functionality of the network into interconnected network functions (NFs), which are typically implemented as Cloud-Native Network Functions. These NFs register with the Network Repository Function (NRF) which maintains their state, and communicate with each other using the Service Communication Proxy (SCP). The interfaces between the elements all utilize RESTful APIs.[97] By breaking functionality down this way, mobile operators are able to utilize different infrastructure vendors for different functions, and the flexibility to scale each function independently as needed.[97]

5G Network Functions [98]
NF Name NF Acronym Analogous EPC element
Authentication Server Function AUSF MME / HSS (Authentication)
Access and Mobility Management Function AMF MME
Unstructured Data Storage Function UDSF N/A
Network Exposure Function NEF N/A
Network Slice Specific Authentication and Authorization Function NSSAAF N/A
Network Slice Selection Function NSSF N/A
Policy Control Function PCF PCRF
Session Management Function SMF MME / PGW-C
Unified Data Management UDM HSS (DB Front End)
Unified Data Repository UDR HSS (User Database)
User Plane Function UPF SGW-U / PGW-U
UE radio Capability Management Function UCMF N/A
Application Function AF AF (IMS)
Network Data Analytics Function NWDAF N/A
CHarging Function CHF CSCF

In addition, the standard describes network entities for roaming and inter-network connectivity, including the Security Edge Protection Proxy (SEPP), the Non-3GPP InterWorking Function (N3IWF), the Trusted Non-3GPP Gateway Function (TNGF), the Wireline Access Gateway Function (W-AGF), and the Trusted WLAN Interworking Function (TWIF). These can be deployed by operators as needed depending on their deployment.

Channel coding

The channel coding techniques for 5G NR have changed from Turbo codes in 4G to polar codes for the control channels and LDPC (low-density parity check codes) for the data channels.[99][100]

Operation in unlicensed spectrum

In December 2018, 3GPP began working on unlicensed spectrum specifications known as 5G NR-U, targeting 3GPP Release 16.[101] Qualcomm has made a similar proposal for LTE in unlicensed spectrum.

Future evolution

5G-Advanced

5G-Advanced (also known as 5.5G) is a name for 3GPP release 18, which (As of 2021) is under conceptual development.[102][103][104][105][106] 5G-Advanced is expected to appear in commercial products in 2024.[107]

Concerns

Security concerns

A report published by the European Commission and European Agency for Cybersecurity details the security issues surrounding 5G. The report warns against using a single supplier for a carrier's 5G infrastructure, especially those based outside the European Union. (Nokia and Ericsson are the only European manufacturers of 5G equipment.)[108]

On October 18, 2018, a team of researchers from ETH Zurich, the University of Lorraine and the University of Dundee released a paper entitled, "A Formal Analysis of 5G Authentication".[109][110] It alerted that 5G technology could open ground for a new era of security threats. The paper described the technology as "immature and insufficiently tested," and one that "enables the movement and access of vastly higher quantities of data, and thus broadens attack surfaces". Simultaneously, network security companies such as Fortinet,[111] Arbor Networks,[112] A10 Networks,[113] and Voxility[114] advised on personalized and mixed security deployments against massive DDoS attacks foreseen after 5G deployment.

IoT Analytics estimated an increase in the number of IoT devices, enabled by 5G technology, from 7 billion in 2018 to 21.5 billion by 2025.[115] This can raise the attack surface for these devices to a substantial scale, and the capacity for DDoS attacks, cryptojacking, and other cyberattacks could boost proportionally.[110] In addition, the EPS solution for 5G networks has identified a design vulnerability. The vulnerability affects the operation of the device during cellular network switching.[116]

Due to fears of potential espionage of users of Chinese equipment vendors, several countries (including the United States, Australia and the United Kingdom as of early 2019)[117] have taken actions to restrict or eliminate the use of Chinese equipment in their respective 5G networks. A 2012 U.S. House Permanent Select Committee on Intelligence report concluded that using equipment made by Huawei and ZTE, another Chinese telecommunications company, could "undermine core U.S. national security interests".[118] In 2018, six U.S. intelligence chiefs, including the directors of the CIA and FBI, cautioned Americans against using Huawei products, warning that the company could conduct "undetected espionage".[119] Further, a 2017 investigation by the FBI determined that Chinese-made Huawei equipment could disrupt U.S. nuclear arsenal communications.[120] Chinese vendors and the Chinese government have denied claims of espionage, but experts have pointed out that Huawei would have no choice but to hand over network data to the Chinese government if Beijing asked for it because of Chinese National Security Law.[121]

In August, 2020, the U.S. State Department launched "The Clean Network" as a U.S. government-led, bi-partisan effort to address what it described as "the long-term threat to data privacy, security, human rights and principled collaboration posed to the free world from authoritarian malign actors". Promoters of the initiative have stated that it has resulted in an "alliance of democracies and companies", "based on democratic values". On October 7, 2020, the UK Parliament's Defence Committee released a report claiming that there was clear evidence of collusion between Huawei and Chinese state and the Chinese Communist Party. The UK Parliament's Defence Committee said that the government should consider removal of all Huawei equipment from its 5G networks earlier than planned.[122] In December 2020, the United States announced that more than 60 nations, representing more than two thirds of the world's gross domestic product, and 200 telecom companies, had publicly committed to the principles of The Clean Network. This alliance of democracies included 27 of the 30 NATO members; 26 of the 27 EU members, 31 of the 37 OECD nations, 11 of the 12 Three Seas nations as well as Japan, Israel, Australia, Singapore, Taiwan, Canada, Vietnam, and India.

Electromagnetic interference

Weather forecasting

The spectrum used by various 5G proposals, especially the n258 band centered at 26 GHz, will be near that of passive remote sensing such as by weather and Earth observation satellites, particularly for water vapor monitoring at 23.8 GHz.[123] Interference is expected to occur due to such proximity and its effect could be significant without effective controls. An increase in interference already occurred with some other prior proximate band usages.[124][125] Interference to satellite operations impairs numerical weather prediction performance with substantially deleterious economic and public safety impacts in areas such as commercial aviation.[126][127]

The concerns prompted U.S. Secretary of Commerce Wilbur Ross and NASA Administrator Jim Bridenstine in February 2019 to urge the FCC to delay some spectrum auction proposals, which was rejected.[128] The chairs of the House Appropriations Committee and House Science Committee wrote separate letters to FCC chairman Ajit Pai asking for further review and consultation with NOAA, NASA, and DoD, and warning of harmful impacts to national security.[129] Acting NOAA director Neil Jacobs testified before the House Committee in May 2019 that 5G out-of-band emissions could produce a 30% reduction in weather forecast accuracy and that the resulting degradation in ECMWF model performance would have resulted in failure to predict the track and thus the impact of Superstorm Sandy in 2012. The United States Navy in March 2019 wrote a memorandum warning of deterioration and made technical suggestions to control band bleed-over limits, for testing and fielding, and for coordination of the wireless industry and regulators with weather forecasting organizations.[130]

At the 2019 quadrennial World Radiocommunication Conference (WRC), atmospheric scientists advocated for a strong buffer of −55 dBW, European regulators agreed on a recommendation of −42 dBW, and US regulators (the FCC) recommended a restriction of −20 dBW, which would permit signals 150 times stronger than the European proposal. The ITU decided on an intermediate −33 dBW until September 1, 2027, and after that a standard of −39 dBW.[131] This is closer to the European recommendation but even the delayed higher standard is much weaker than that requested by atmospheric scientists, triggering warnings from the World Meteorological Organization (WMO) that the ITU standard, at 10 times less stringent than its recommendation, brings the "potential to significantly degrade the accuracy of data collected".[132] A representative of the American Meteorological Society (AMS) also warned of interference,[133] and the European Centre for Medium-Range Weather Forecasts (ECMWF), sternly warned, saying that society risks "history repeat[ing] itself" by ignoring atmospheric scientists' warnings (referencing global warming, monitoring of which could be imperiled).[134] In December 2019, a bipartisan request was sent from the US House Science Committee to the Government Accountability Office (GAO) to investigate why there is such a discrepancy between recommendations of US civilian and military science agencies and the regulator, the FCC.[135]

Aviation

The United States FAA has warned that radar altimeters on aircraft, which operate between 4.2 and 4.4 GHz, might be affected by 5G operations between 3.7 and 3.98 GHz. This is particularly an issue with older altimeters using RF filters[136] which lack protection from neighboring bands.[137] This is not as much of an issue in Europe, where 5G uses lower frequencies between 3.4 and 3.8 GHz.[138] Nonetheless, the DGAC in France has also expressed similar worries and recommended 5G phones be turned off or be put in airplane mode during flights.[139]

On December 31, 2021, U.S. Transportation Secretary Pete Buttigieg and Steve Dickinson, administrator of the Federal Aviation Administration asked the chief executives of AT&T and Verizon to delay 5G implementation over aviation concerns. The government officials asked for a two-week delay starting on January 5, 2022, while investigations are conducted on the effects on radar altimeters. The government transportation officials also asked the cellular providers to hold off their new 5G service near 50 priority airports, to minimize disruption to air traffic that would be caused by some planes being disallowed from landing in poor visibility.[140] After coming to an agreement with government officials the day before,[141] Verizon and AT&T activated their 5G networks on January 19, 2022, except for certain towers near 50 airports.[142] AT&T scaled back its deployment even further than its agreement with the FAA required.[143]

The FAA rushed to test and certify radar altimeters for interference so that planes could be allowed to perform instrument landings (e.g. at night and in low visibility) at affected airports. By January 16, it had certified equipment on 45% of the U.S. fleet, and 78% by January 20.[144] Airlines complained about the avoidable impact on their operations, and commentators said the affair called into question the competence of the FAA.[145] Several international airlines substituted different planes so they could avoid problems landing at scheduled airports, and about 2% of flights (320) were cancelled by the evening of January 19.[146]

Satellite

A number of 5G networks deployed on the radio frequency band of 3.3–3.6 GHz are expected to cause interference with C-Band satellite stations, which operate by receiving satellite signals at 3.4–4.2 GHz frequency.[147] This interference can be mitigated with low-noise block downconverters and waveguide filters.[147]

Wi-Fi

In regions like the US and EU, the 6 GHz band is to be opened up for unlicensed applications, which would permit the deployment of 5G-NR Unlicensed, 5G version of LTE in unlicensed spectrum, as well as Wi-Fi 6e. However, interference could occur with the co-existence of different standards in the frequency band.[148]

Overhype

There have been concerns surrounding the promotion of 5G, questioning whether the technology is overhyped. There are questions on whether 5G will truly change the customer experience,[149] ability for 5G's mmWave signal to provide significant coverage,[150][151] overstating what 5G can achieve or misattributing continuous technological improvement to "5G",[152] lack of new use case for carriers to profit from,[153] wrong focus on emphasizing direct benefits on individual consumers instead of for internet of things devices or solving the last mile problem,[154] and overshadowing the possibility that in some aspects there might be other more appropriate technologies.[155] Such sort of concerns have also led to consumers not trusting information provided by cellular providers on the topic.[156]

Misinformation

Health

There is a long history of fear and anxiety surrounding wireless signals that predates 5G technology. The fears about 5G are similar to those that have persisted throughout the 1990s and 2000s. They center on fringe claims that non-ionizing radiation poses dangers to human health.[157] Unlike ionizing radiation, non-ionizing radiation cannot remove electrons from atoms. The United States of America Centers for Disease Control and Prevention (CDC) says "Exposure to intense, direct amounts of non-ionizing radiation may result in damage to tissue due to heat. This is not common and mainly of concern in the workplace for those who work on large sources of non-ionizing radiation devices and instruments."[158] Some advocates of fringe health claim the regulatory standards are too low and influenced by lobbying groups.[157]

An anti-5G sticker in Luxembourg

There have been rumors that 5G mobile phone use can cause cancer, but this is a myth.[159] Many popular books of dubious merit have been published on the subject[citation needed] including one by Joseph Mercola alleging that wireless technologies caused numerous conditions from ADHD to heart diseases and brain cancer. Mercola has drawn sharp criticism for his anti-vaccinationism during the COVID-19 pandemic and was warned by the Food and Drug Administration to stop selling fake COVID-19 cures through his online alternative medicine business.[157][160]

According to the New York Times , one origin of the 5G health controversy was an erroneous unpublished study that physicist Bill P. Curry did for the Broward County School Board in 2000 which indicated that the absorption of external microwaves by brain tissue increased with frequency.[161] According to experts[citation needed] this was wrong, the millimeter waves used in 5G are safer than lower frequency microwaves because they cannot penetrate the skin and reach internal organs. Curry had confused in vitro and in vivo research. However Curry's study was widely distributed on the internet. Writing in The New York Times in 2019, William Broad reported that RT America began airing programming linking 5G to harmful health effects which "lack scientific support", such as "brain cancer, infertility, autism, heart tumors, and Alzheimer's disease". Broad asserted that the claims had increased. RT America had run seven programs on this theme by mid-April 2019 but only one in the whole of 2018. The network's coverage had spread to hundreds of blogs and websites.[162]

In April 2019, the city of Brussels in Belgium blocked a 5G trial because of radiation rules.[163] In Geneva, Switzerland , a planned upgrade to 5G was stopped for the same reason.[164] The Swiss Telecommunications Association (ASUT) has said that studies have been unable to show that 5G frequencies have any health impact.[165]

According to CNET,[166] "Members of Parliament in the Netherlands are also calling on the government to take a closer look at 5G. Several leaders in the United States Congress have written to the Federal Communications Commission expressing concern about potential health risks. In Mill Valley, California, the city council blocked the deployment of new 5G wireless cells."[166][167][168][169][170] Similar concerns were raised in Vermont[171] and New Hampshire.[166] The US FDA is quoted saying that it "continues to believe that the current safety limits for cellphone radiofrequency energy exposure remain acceptable for protecting the public health."[172] After campaigning by activist groups, a series of small localities in the UK, including Totnes, Brighton and Hove, Glastonbury, and Frome, passed resolutions against the implementation of further 5G infrastructure, though these resolutions have no impact on rollout plans.[173][174][175]

Low-level EMF does have some effects on other organisms.[176] Vian et al., 2006 finds an effect of microwave on gene expression in plants.[176] A meta-analysis of 95 in vitro and in vivo studies showed that an average of 80% of the in vivo research showed effects of such radiation, as did 58% of the in vitro research, but that the results were inconclusive as to whether any of these effects pose a health risk.[177]

COVID-19 conspiracy theories and arson attacks

The World Health Organization published a mythbuster infographic to combat the conspiracy theories about COVID-19 and 5G.

As the introduction of 5G technology coincided with the time of COVID-19 pandemic, several conspiracy theories circulating online posited a link between COVID-19 and 5G.[178] This has led to dozens of arson attacks being made on telecom masts in the Netherlands (Amsterdam, Rotterdam, etc.), Ireland (Cork,[179] etc.), Cyprus, the United Kingdom (Dagenham, Huddersfield, Birmingham, Belfast and Liverpool),[180][181] Belgium (Pelt), Italy (Maddaloni), Croatia (Bibinje)[182] and Sweden.[183] It led to at least 61 suspected arson attacks against telephone masts in the United Kingdom alone[184] and over twenty in The Netherlands.

In the early months of the pandemic, anti-lockdown protesters at protests over responses to the COVID-19 pandemic in Australia were seen with anti-5G signs, an early sign of what became a wider campaign by conspiracy theorists to link the pandemic with 5G technology. There are two versions of the 5G-COVID-19 conspiracy theory:[157]

  1. The first version claims that radiation weakens the immune system, making the body more vulnerable to SARS-CoV-2 (the virus that causes COVID-19).
  2. The second version claims that 5G causes COVID-19. There are different variations on this. Some claim that the pandemic is coverup of illness caused by 5G radiation or that COVID-19 originated in Wuhan because that city was "the guinea-pig city for 5G".

Marketing of non-5G services

In various parts of the world, carriers have launched numerous differently branded technologies, such as "5G Evolution", which advertise improving existing networks with the use of "5G technology".[185] However, these pre-5G networks are an improvement on specifications of existing LTE networks that are not exclusive to 5G. While the technology promises to deliver higher speeds, and is described by AT&T as a "foundation for our evolution to 5G while the 5G standards are being finalized", it cannot be considered to be true 5G. When AT&T announced 5G Evolution, 4x4 MIMO, the technology that AT&T is using to deliver the higher speeds, had already been put in place by T-Mobile without being branded with the 5G moniker. It is claimed that such branding is a marketing move that will cause confusion with consumers, as it is not made clear that such improvements are not true 5G.[186]

History

In April 2008, NASA partnered with Geoff Brown and Machine-to-Machine Intelligence (M2Mi) Corp to develop a fifth generation communications technology approach, though largely concerned with working with nanosats.[187] That same year, the South Korean IT R&D program of "5G mobile communication systems based on beam-division multiple access and relays with group cooperation" was formed.[188]

In August 2012, New York University founded NYU Wireless, a multi-disciplinary academic research centre that has conducted pioneering work in 5G wireless communications.[189] On October 8, 2012, the UK's University of Surrey secured £35M for a new 5G research centre, jointly funded by the British government's UK Research Partnership Investment Fund (UKRPIF) and a consortium of key international mobile operators and infrastructure providers, including Huawei, Samsung, Telefónica Europe, Fujitsu Laboratories Europe, Rohde & Schwarz, and Aircom International. It will offer testing facilities to mobile operators keen to develop a mobile standard that uses less energy and less radio spectrum, while delivering speeds higher than current 4G with aspirations for the new technology to be ready within a decade.[190][191][192][193] On November 1, 2012, the EU project "Mobile and wireless communications Enablers for the Twenty-twenty Information Society" (METIS) starts its activity toward the definition of 5G. METIS achieved an early global consensus on these systems. In this sense, METIS played an important role of building consensus among other external major stakeholders prior to global standardization activities. This was done by initiating and addressing work in relevant global fora (e.g. ITU-R), as well as in national and regional regulatory bodies.[194] That same month, the iJOIN EU project was launched, focusing on "small cell" technology, which is of key importance for taking advantage of limited and strategic resources, such as the radio wave spectrum. According to Günther Oettinger, the European Commissioner for Digital Economy and Society (2014–2019), "an innovative utilization of spectrum" is one of the key factors at the heart of 5G success. Oettinger further described it as "the essential resource for the wireless connectivity of which 5G will be the main driver".[195] iJOIN was selected by the European Commission as one of the pioneering 5G research projects to showcase early results on this technology at the Mobile World Congress 2015 (Barcelona, Spain).

In February 2013, ITU-R Working Party 5D (WP 5D) started two study items: (1) Study on IMT Vision for 2020 and beyond, and; (2) Study on future technology trends for terrestrial IMT systems. Both aiming at having a better understanding of future technical aspects of mobile communications toward the definition of the next generation mobile.[196] On May 12, 2013, Samsung Electronics stated that they had developed a "5G" system. The core technology has a maximum speed of tens of Gbit/s (gigabits per second). In testing, the transfer speeds for the "5G" network sent data at 1.056 Gbit/s to a distance of up to 2 kilometers with the use of an 8*8 MIMO.[197][198] In July 2013, India and Israel agreed to work jointly on development of fifth generation (5G) telecom technologies.[199] On October 1, 2013, NTT (Nippon Telegraph and Telephone), the same company to launch world's first 5G network in Japan, wins Minister of Internal Affairs and Communications Award at CEATEC for 5G R&D efforts.[200] On November 6, 2013, Huawei announced plans to invest a minimum of $600 million into R&D for next generation 5G networks capable of speeds 100 times higher than modern LTE networks.[201]

On April 3, 2019, South Korea became the first country to adopt 5G.[202] Just hours later, Verizon launched its 5G services in the United States, and disputed South Korea's claim of becoming the world's first country with a 5G network, because allegedly, South Korea's 5G service was launched initially for just six South Korean celebrities so that South Korea could claim the title of having the world's first 5G network.[203] In fact, the three main South Korean telecommunication companies (SK Telecom, KT, and LG Uplus) added more than 40,000 users to their 5G network on the launch day.[204] In June 2019, the Philippines became the first country in Southeast Asia to roll out a 5G broadband network after Globe Telecom commercially launched its 5G data plans to customers.[205] AT&T brings 5G service to consumers and businesses in December 2019 ahead of plans to offer 5G throughout the United States in the first half of 2020.[206][207][208]

In 2020, AIS and TrueMove H launched 5G services in Thailand, making it the first country in Southeast Asia to have commercial 5G.[209][210] A functional mockup of a Russian 5G base station, developed by domestic specialists as part of Rostec's digital division Rostec.digital, was presented in Nizhny Novgorod at the annual conference "Digital Industry of Industrial Russia".[211][212]

Other applications

Automobiles

5G Automotive Association have been promoting the C-V2X communication technology that will first be deployed in 4G. It provides for communication between vehicles and infrastructures.[213]

Digital twins

A real time digital twin of the real object such as a turbine engine, aircraft, wind turbines, offshore platform and pipelines. 5G networks helps in building it due to the latency and throughput to capture near real-time IoT data and support digital twins.[214]

Public safety

Mission-critical push-to-talk (MCPTT) and mission-critical video and data are expected to be furthered in 5G.[215]

Fixed wireless

Fixed wireless connections will offer an alternative to fixed line broadband (ADSL, VDSL, Fiber optic, and DOCSIS connections) in some locations.[216][217][better source needed]

Wireless video transmission for broadcast applications

Sony has tested the possibility of using local 5G networks to replace the SDI cables currently used in broadcast camcorders.[218]

The 5G Broadcast tests started around 2020 (Orkneys, Bavaria, Austria, Central Bohemia) based on FeMBMS (Further evolved multimedia broadcast multicast service).[219] The aim is to serve unlimited number of mobile or fixed devices with video (TV) and audio (radio) streams without these consuming any data flow or even being authenticated in a network.

See also

References

  1. Hoffman, Chris (January 7, 2019). "What is 5G, and how fast will it be?". How-To Geek website. How-To Geek LLC. https://www.howtogeek.com/340002/what-is-5g-and-how-fast-will-it-be/. 
  2. "5G explained: What it is, who has 5G, and how much faster is it really?". https://www.cnn.com/interactive/2020/03/business/what-is-5g/. 
  3. 3.0 3.1 Horwitz, Jeremy (December 10, 2019). "The definitive guide to 5G low, mid, and high band speeds". VentureBeat online magazine. https://venturebeat.com/2019/12/10/the-definitive-guide-to-5g-low-mid-and-high-band-speeds/. 
  4. 4.0 4.1 De Looper, Christian; Jansen, Mark (April 22, 2022). "Is 5G as fast as they're saying? We break down the speeds". Digital Trends. https://www.digitaltrends.com/mobile/how-fast-is-5g/. 
  5. Davies, Darrell (May 20, 2019). "Small Cells – Big in 5G". Nokia. https://www.nokia.com/blog/small-cells-big-5g/. 
  6. E.J. Violette; R.H. Espeland; R.O. DeBolt; F.K. Schwering (May 1988). "Millimeter-wave propagation at street level in an urban environment". IEEE Transactions on Geoscience and Remote Sensing (IEEE) 26 (3): 368–380. doi:10.1109/36.3038. Bibcode1988ITGRS..26..368V. https://ieeexplore.ieee.org/document/3038. Retrieved March 19, 2021. ""For non-line-of-sight (non-LOS) paths obstructed by buildings of several common materials, results that showed signal attenuations in excess of 100 dB. When the LOS followed a path directly through clear glass walls, the attenuation was small at all probe frequencies. However, when the glass wall had a metalized coating to reduce ultraviolet and infrared radiation, the attenuation increased by 25 to 50 dB for each metallized layer. In most cases no signals could be detected through steel reinforced concrete or brick buildings."". 
  7. Ganji, Venkata Siva Santosh; Lin, Tzu-Hsiang; Espinal, Francisco A.; Kumar, P. R. (2021-01-05). "UNBLOCK: Low Complexity Transient Blockage Recovery for Mobile mm-Wave Devices". 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS). IEEE. pp. 501–508. doi:10.1109/COMSNETS51098.2021.9352816. ISBN 978-1-7281-9127-0. https://ieeexplore.ieee.org/document/9352816. 
  8. "FCC Auction 102 – 24 GHz". Federal Communications Commission. https://auctiondata.fcc.gov/public/projects/auction102. 
  9. "5G – Its Not Here Yet, But Closer Than You Think". October 31, 2017. https://electronicdesign.com/embedded-revolution/5g-it-s-not-here-yet-closer-you-think. 
  10. "Managing the Future of Cellular". March 20, 2020. https://www.arm.com/-/media/global/solutions/infrastructure/managing-the-future-of-cellular.pdf?revision=72c22c02-de7e-43d5-bf10-5690d65352cd. 
  11. Yu, Heejung; Lee, Howon; Jeon, Hongbeom (October 2017). "What is 5G? Emerging 5G Mobile Services and Network Requirements" (in en). Sustainability 9 (10): 1848. doi:10.3390/su9101848. 
  12. 12.0 12.1 "Intel Accelerates the Future with World's First Global 5G Modem" (in en-US). https://newsroom.intel.com/editorials/intel-accelerates-the-future-with-first-global-5g-modem/. 
  13. "Ford: Self-driving cars "will be fully capable of operating without C-V2X"". http://wirelessone.news/10-r/1283-ford-self-driving-cars-will-be-fully-capable-of-operating-without-c-v2x. 
  14. "5GAA Tele-Operated Driving (ToD): Use Cases and Technical Requirements Technical Requirements". https://5gaa.org/wp-content/uploads/2020/07/5GAA_XW5-200029_ToD_D1.1-Use-Cases-and-Technical-Requirements.pdf. 
  15. "Smooth teleoperator: The rise of the remote controller" (in en-US). August 17, 2020. https://venturebeat.com/2020/08/17/smooth-teleoperator-the-rise-of-the-remote-controller/. 
  16. Wyrzykowski, Robert (January 2023). "Mobile Network Experience 5G Report – USA". OpenSignal. https://www.opensignal.com/reports/2023/01/usa/mobile-network-experience-5g. 
  17. Fogg, Ian (June 22, 2022). "Benchmarking the Global 5G Experience – June 2022". OpenSignal. https://www.opensignal.com/2022/06/22/benchmarking-the-global-5g-experience-june-2022. 
  18. I, Chih-Lin; Han, Shuangfeng; Bian, Sen (2020). "Energy-efficient 5G for a greener future". Nature Electronics 3 (4): 182–184. doi:10.1038/s41928-020-0404-1. 
  19. "The first real 5G specification has officially been completed". The Verge. https://theverge.com/2017/12/20/16803326/5g-network-specification-standard-3gpp-nr-official. 
  20. Flynn, Kevin. "Workshop on 3GPP submission towards IMT-2020". http://3gpp.org/news-events/3gpp-news/1976-imt_2020. 
  21. Dave. "5G NR Only 25% to 50% Faster, Not Truly a New Generation". http://wirelessone.news/10-r/1036-5g-nr-only-25-to-50-faster-not-truly-a-new-generation. 
  22. "Factcheck: Large increase of capacity going from LTE to 5G low and mid-band". http://wirelessone.news/spectrum/1204-factcheck-large-increase-of-capacity-going-from-lte-to-5g-low-and-mid-band. 
  23. Teral, Stephane (January 30, 2019). "5G best choice architecture". https://res-www.zte.com.cn/mediares/zte/Files/PDF/white_book/5g-best-choice-architecture.pdf. 
  24. "Specification Numbering". 3GPP. https://www.3gpp.org/specifications/specification-numbering. 
  25. "3GPP Specification Status Report". 3GPP. https://www.3gpp.org/DynaReport/status-report.htm. 
  26. "ETSI TS 123 501 V16.12.0 (2022–03). 5G; System architecture for the 5G System (5GS) (3GPP TS 23.501 version 16.12.0 Release 16)". ETSI and 3GPP. https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.12.00_60/ts_123501v161200p.pdf.  (TS 23.501)
  27. "Non-Access-Stratum (NAS) protocol for 5G System (5GS); Stage 3. (3GPP TS 24.501 version 16.10.0 Release 16) TS 24.501 release 16.10.0". ETSI and 3GPP. https://www.etsi.org/deliver/etsi_ts/124500_124599/124501/16.10.00_60/ts_124501v161000p.pdf.  (TS 24.501)
  28. "Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; 5G; Numbering, addressing and identification (3GPP TS 23.003 version 16.8.0 Release 16)". ETSI and 3GPP. https://www.etsi.org/deliver/etsi_ts/123000_123099/123003/16.08.00_60/ts_123003v160800p.pdf.  (TS 23.003)
  29. "What is 5G New Radio (5G NR)". https://5g.co.uk/guides/what-is-5g-new-radio/. 
  30. "Making 5G New Radio (NR) a Reality – The Global 5G Standard – IEEE Communications Society". https://comsoc.org/webinars/making-5g-new-radio-nr-reality-%E2%80%93-global-5g-standard. 
  31. "Status And Future Of 5G New Radio Technology – C&T RF Antennas Manufacturer" (in en-US). C&T Rf Antennas Manufacturer. 2021-08-24. https://ctrfantennasinc.com/status-and-future-of-5g-new-radio-technology/. 
  32. "What is India's 5Gi Standard? Explained!". August 3, 2022. https://beebom.com/what-is-5gi/. 
  33. "TSDSI 5Gi standard merged with 3GPP 5G". April 29, 2022. https://tsdsi.in/tsdsi-5gi-standard-merged-with-3gpp-5gnew/. 
  34. Kastrenakes, Jacob (December 7, 2018). "Is Verizon's 5G home internet real 5G?". https://www.techrepublic.com/article/verizon-halts-5g-tf-deployments-plans-to-double-5g-home-internet-speeds-in-six-months/. 
  35. "Mobile industry eyes 5G devices in early 2019". https://telecomasia.net/content/mobile-industry-eyes-5g-devices-early-2019. 
  36. "With LTE-M and NB-IoT You're Already on the Path to 5G". https://sierrawireless.com/iot-blog/iot-blog/2018/05/lte-m-nb-iot-5g-networks/. 
  37. Munira Jaffar & Nicolas Chuberre (1 July 2022). "NTN & Satellite in Rel-17 & 18". 3rd Generation Partnership Project (3GPP). https://www.3gpp.org/news-events/partner-news/ntn-rel17. 
  38. Xingqin Lin; Stefan Rommer; Sebastian Euler; Emre A. Yavuz; Robert S. Karlsson (2021). "5G from Space: An Overview of 3GPP Non-Terrestrial Networks". arXiv:2103.09156 [cs.NI].
  39. "Samsung Electronics Introduces Standardized 5G NTN Modem Technology To Power Smartphone-Satellite Communication" (in en). https://news.samsung.com/global/samsung-electronics-introduces-standardized-5g-ntn-modem-technology-to-power-smartphone-satellite-communication. 
  40. MediaTek (2023-06-29). "MediaTek to Showcase its Groundbreaking Satellite Connectivity…" (in en). https://corp.mediatek.com/news-events/press-releases/mediatek-to-showcase-its-groundbreaking-satellite-connectivity-technology-at-mwc-2023. 
  41. "5G Satellite (NTN)" (in en). https://www.mediatek.com/technology/5g/5g-satellite-ntn. 
  42. "Qualcomm Launches New Satellite IoT Solutions to Provide Uninterrupted Remote Monitoring and Asset Tracking" (in en). https://www.qualcomm.com/news/releases/2023/06/qualcomm-launches-new-satellite-iot-solutions-to-provide-uninter. 
  43. Amadeo, Ron (2023-06-29). "Motorola's "Satellite Link" hotspot lets you send messages via outer space" (in en-us). https://arstechnica.com/gadgets/2023/06/motorolas-satellite-link-hotspot-lets-you-send-messages-via-outer-space/. 
  44. "Motorola Defy Satellite Link" (in en-US). https://motorolarugged.com/en-us/motorola-defy-satellite-link/. 
  45. "Supermicro and Rakuten Symphony Extend Their Collaboration and Offer Complete 5G, Telco, and Edge Solutions For Cloud Based Open RAN Mobile Networks". PR Newswire. https://www.prnewswire.com/news-releases/supermicro-and-rakuten-symphony-extend-their-collaboration-and-offer-complete-5g-telco-and-edge-solutions-for-cloud-based-open-ran-mobile-networks-301759130.html. 
  46. "NR-U Transforming 5G – Qualcomm Presentation". https://gsacom.com/paper/nr-u-transforming-5g-qualcomm-presentation/. 
  47. "The Private LTE & 5G Network Ecosystem: 2023 – 2030" (in en-US). https://www.snstelecom.com/private-lte. 
  48. "[ケータイ用語の基礎知識第941回:NSA・SA方式とは"]. February 19, 2020. https://k-tai.watch.impress.co.jp/docs/column/keyword/1235918.html. 
  49. "LTE and 5G Market Statistics". April 8, 2019. https://gsacom.com/paper/lte-5g-market-statistics-8-april-2019. 
  50. "5G Investments: Trials, Deployments, Launches". https://gsacom.com/paper/5g-investments-global-progress-feb19/. 
  51. "5G coverage will span two thirds of the global population in 6 years, Ericsson predicts". November 25, 2019. https://www.cnbc.com/2019/11/25/5g-will-span-two-thirds-of-global-population-in-6-years-ericsson-says.html. 
  52. Mello, Gabriela (November 25, 2019). "Ericsson to invest over $230 million in Brazil to build new 5G assembly line". https://www.reuters.com/article/us-ericsson-brazil/ericsson-to-invest-over-230-million-in-brazil-to-build-new-5g-assembly-line-idUSKBN1XZ2D5. 
  53. "Telecom's 5G revolution triggers shakeup in base station market". https://asia.nikkei.com/Business/Technology/Telecom-s-5G-revolution-triggers-shakeup-in-base-station-market. 
  54. "Samsung Electronics supplies 53,000 5G base stations for Korean carriers". April 10, 2019. https://www.rcrwireless.com/20190410/5g/samsung-electronics-supplies-53000-5g-base-stations-korean-carriers. 
  55. "삼성 5G기지국 5만3000개 깔았다…화웨이 5배 '압도'". April 10, 2019. http://www.asiae.co.kr/news/view.htm?idxno=2019041008040872343. 
  56. "Samsung dominates Korea 5G deployments" (in en-GB). April 10, 2019. https://www.mobileworldlive.com/asia/asia-news/samsung-dominates-korea-5g-deployments/. 
  57. "Fast but patchy: Trying South Korea's new 5G service" (in en-GB). https://asia.nikkei.com/Spotlight/5G-networks/Fast-but-patchy-Trying-South-Korea-s-new-5G-service. 
  58. "Korea 5G Falls by Half. Miracle Over?". https://wirelessone.news/10-r/1660-korea-5g-falls-by-half-miracle-over-2. 
  59. "T‑Mobile Launches World's First Nationwide Standalone 5G Network". https://www.t-mobile.com/news/network/standalone-5g-launch. 
  60. "Japan allocates 5G spectrum, excludes Chinese equipment vendors". April 11, 2019. https://www.scmp.com/tech/policy/article/3005645/japan-allocates-5g-spectrum-conditions-cement-curbs-chinese-vendors. 
  61. "Huawei Launches Full Range of 5G End-to-End Product Solutions". https://www.huawei.com/en/press-events/news/2018/2/Huawei-Launches-Full-Range-of-5G-End-to-End-Product-Solutions. 
  62. "Japan allocates 5G spectrum to carriers, blocks Huawei and ZTE gear". April 10, 2019. https://venturebeat.com/2019/04/10/japan-allocates-5g-spectrum-to-carriers-blocks-huawei-and-zte-gear/. 
  63. "Samsung signals big 5G equipment push, again, at factory". January 4, 2019. https://www.retailnews.asia/samsung-signals-big-5g-equipment-push-again-at-factory/. 
  64. "Nokia says it is the one-stop shop for 5G network gear | TechRadar". February 26, 2019. https://www.techradar.com/amp/news/nokia-says-it-is-the-one-stop-shop-for-5g-network-gear. 
  65. "5G radio – Ericsson". February 6, 2018. https://www.ericsson.com/en/networks/offerings/5g/5g-radio. 
  66. Riccardo Barlaam (February 21, 2019). "5G, gli Stati Uniti hanno la risposta per resistere all'avanzata cinese" (in it). Il Sole 24 Ore. https://www.ilsole24ore.com/art/5g-risposta-usa-all-avanzata-cinese-si-chiama-cisco-ABqN30WB. 
  67. Parzyan, Anahit (2023). "China's Digital Silk Road: Empowering Capabilities for Digital Leadership in Eurasia". China and Eurasian Powers in a Multipolar World Order 2.0: Security, Diplomacy, Economy and Cyberspace. Mher Sahakyan. New York: Routledge. ISBN 978-1-003-35258-7. OCLC 1353290533. 
  68. "5G Spectrum Recommendations". http://5gamericas.org/files/9114/9324/1786/5GA_5G_Spectrum_Recommendations_2017_FINAL.pdf. 
  69. "FCC Spectrum Frontier Proposal". NYU Wireless. July 15, 2016. http://wireless.engineering.nyu.edu/fcc-spectrum-frontier-proposal-updated/. 
  70. Foo Yun Chee (March 3, 2018). "EU countries, lawmakers strike deal to open up spectrum for 5G". Reuters. https://reuters.com/article/us-eu-telecoms-spectrum/eu-countries-lawmakers-strike-deal-to-open-up-spectrum-for-5g-idUSKCN1GE2IB. 
  71. "Spectrum for Terrestrial 5G Networks: Licensing Developments Worldwide". March 2019. https://gsacom.com/paper/5g-spectrum-licensing-mar-2029/. 
  72. "GSA launches first global database of commercial 5G devices". https://www.totaltele.com/502531/GSA-launches-first-global-database-of-commercial-5G-devices. 
  73. "5G Device Ecosystem Report". https://gsacom.com/paper/5g-device-ecosystem-report-march-2019/. 
  74. "5G Devices: Ecosystem Report". September 2019. https://gsacom.com/paper/5g-devices-ecosystem-report-september-2019/. 
  75. "LTE, 5G and 3GPP IoT Chipsets: Status Update". April 2019. https://gsacom.com/paper/lte-5g-3gpp-iot-chipsets-status-update-3. 
  76. "5G is making the smartphones we love more expensive than ever". March 14, 2020. https://www.businessinsider.com/5g-is-making-smartphones-we-love-more-expensive-than-ever-2020-3. 
  77. Collins, Katie (March 19, 2020). "The Nokia 8.3 is the 'first global 5G phone.' Here's what that means for you". https://www.cnet.com/news/the-nokia-8-3-is-the-first-global-5g-phone-heres-what-that-means-for-you/. 
  78. "Google Pixel 5". GSMArena. https://www.gsmarena.com/google_pixel_5-10386.php. 
  79. "What consumers need to know about this week's AT&T-Verizon 5G rollout". CBS News. https://www.cbsnews.com/news/5g-rollout-verizon-att-consumers-need-know/. 
  80. "iPhone 12 and 5G: All the answers to your questions about the super-fast connectivity". CNET. https://www.cnet.com/tech/mobile/apple-iphone-12-and-5g-faq-answers-to-questions-about-super-fast-connectivity/. 
  81. "5G speed vs 5G range-What is the value of 5G speed,5G range". http://www.rfwireless-world.com/Terminology/5G-Speed-Vs-5G-Range.html. 
  82. "Top Five Considerations for Massive MIMO 5G Deployments". https://www.infovista.com/blog/massive-mimo-5g-deployments. 
  83. "IT Needs to Start Thinking About 5G and Edge Cloud Computing". February 7, 2018. http://au.pcmag.com/feature/51666/it-needs-to-start-thinking-about-5g-and-edge-cloud-computing. 
  84. "Mobile Edge Computing – An Important Ingredient of 5G Networks". IEEE Softwarization. March 2016. https://sdn.ieee.org/newsletter/march-2016/mobile-edge-computing-an-important-ingredient-of-5g-networks. 
  85. Brand, Aron (September 20, 2019). "3 Advantages of Edge Computing". medium.com. https://medium.com/p/51c13268a365. 
  86. "Scenarios and requirements for small cell enhancements for E-UTRA and E-UTRAN (3GPP TR 36.932 version 16.0.0 Release 16)". ETSI and 3GPP. https://www.etsi.org/deliver/etsi_tr/136900_136999/136932/16.00.00_60/tr_136932v160000p.pdf.  (TR 36.932)
  87. "5G small cells: everything you need to know". 5gradar.com. February 18, 2021. https://www.5gradar.com/features/5g-small-cells-everything-you-need-to-know. 
  88. "Small Cells – Big in 5G". Nokia. https://www.nokia.com/blog/small-cells-big-5g/. 
  89. "Small Cell". Ericsson. https://www.ericsson.com/en/small-cells. 
  90. Rappaport, Theodore S.; Sun, Shu; Mayzus, Rimma; Zhao, Hang; Azar, Yaniv; Wang, Kevin; Wong, George N.; Schulz, Jocelyn K. et al. (2013). "Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!". IEEE Access 1: 335–349. doi:10.1109/ACCESS.2013.2260813. ISSN 2169-3536. Bibcode2013IEEEA...1..335R. 
  91. "What is 5G Beamforming?" (in en). https://enterprise.verizon.com/resources/articles/5g-beamforming-massive-mimo/. 
  92. "Article – 5G | Solwise Ltd". https://www.solwise.co.uk/article-5G. 
  93. Ghafoor, Umar; Ali, Mudassar; Khan, Humayun Zubair; Siddiqui, Adil Masood; Naeem, Muhammad (2022-08-01). "NOMA and future 5G & B5G wireless networks: A paradigm". Journal of Network and Computer Applications 204: 103413. doi:10.1016/j.jnca.2022.103413. ISSN 1084-8045. https://www.sciencedirect.com/science/article/pii/S1084804522000728. 
  94. "WS-21: SDN5GSC – Software Defined Networking for 5G Architecture in Smart Communities". May 17, 2018. https://globecom2018.ieee-globecom.org/workshop/ws-21-sdn5gsc-software-defined-networking-5g-architecture-smart-communities. 
  95. Ordonez-Lucena, J.; Ameigeiras, P.; Lopez, D.; Ramos-Munoz, J. J.; Lorca, J.; Folgueira, J. (2017). "Network Slicing for 5G with SDN/NFV: Concepts, Architectures, and Challenges". IEEE Communications Magazine 55 (5): 80–87. doi:10.1109/MCOM.2017.1600935. ISSN 0163-6804. Bibcode2017arXiv170304676O. 
  96. 97.0 97.1 "What is a Service Based Architecture?". 9 September 2021. https://www.rcrwireless.com/20210909/5g/what-is-a-service-based-architecture. 
  97. "System architecture for the 5G System (5GS)". October 2020. https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/16.06.00_60/ts_123501v160600p.pdf. 
  98. "5G Channel Coding". https://accelercomm.com/sites/accelercomm.com/files/5G-Channel-Coding_0.pdf. 
  99. Maunder, Robert (September 2016). "A Vision for 5G Channel Coding". https://accelercomm.com/sites/accelercomm.com/files/5G-Channel-Coding_0.pdf. 
  100. "5G NR 3GPP | 5G NR Qualcomm". December 12, 2018. https://www.qualcomm.com/news/onq/2018/12/13/3gpp-commits-5g-nr-unlicensed-spectrum-its-next-release. 
  101. "Release 18". https://www.3gpp.org/release18. 
  102. "5G-Advanced's system architecture begins taking shape at 3GPP" (in en). https://www.nokia.com/blog/5g-advanceds-system-architecture-begins-taking-shape-at-3gpp/. 
  103. "Four ways 5G-Advanced will transform our industry" (in en). https://www.nokia.com/blog/four-ways-5g-advanced-will-transform-our-industry/. 
  104. "5G-Advanced explained". September 15, 2023. https://www.nokia.com/about-us/newsroom/articles/5g-advanced-explained/. 
  105. "5G Advanced: Evolution towards 6G". September 15, 2023. https://www.ericsson.com/en/reports-and-papers/white-papers/5g-advanced-evolution-towards-6g. 
  106. Tomás, Juan Pedro (2023-06-30). "Huawei to launch full set of commercial 5.5G network equipment in 2024" (in en-US). https://www.rcrwireless.com/20230630/5g/huawei-to-launch-full-set-of-commercial-5-5g-network-equipment-in-2024. 
  107. Duckett, Chris (October 10, 2019). "Europe warns 5G will increase attack paths for state actors". https://www.zdnet.com/article/europe-warns-5g-will-increase-attack-paths-for-state-actors/. 
  108. Basin, David; Dreier, Jannik; Hirschi, Lucca; Radomirovic, Saša; Sasse, Ralf; Stettler, Vincent (2018). "A Formal Analysis of 5G Authentication". Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security – CCS '18. pp. 1383–1396. doi:10.1145/3243734.3243846. ISBN 9781450356930. 
  109. 110.0 110.1 "How to Prepare for the Coming 5G Security Threats" (in en-US). November 26, 2018. https://securityintelligence.com/how-to-prepare-for-the-coming-5g-security-threats/. 
  110. Maddison, John (February 19, 2019). "Addressing New Security Challenges with 5G" (in en). https://www.csoonline.com/article/3341381/addressing-new-security-challenges-with-5g.html. 
  111. "NETSCOUT Predicts: 5G Trends for 2019" (in en). https://www.netscout.com/blog/5G-trends-predictions-2019. 
  112. "The Urgency of Network Security in the Shared LTE/5G Era". June 19, 2019. https://www.a10networks.com/blog/the-urgency-of-network-security-in-the-shared-lte-5g-era/. 
  113. "Security concerns in a 5G era: are networks ready for massive DDoS attacks?". https://www.scmagazineuk.com/article/1584554. 
  114. "State of the IoT 2018: Number of IoT devices now at 7B – Market accelerating" (in en-US). August 8, 2018. https://iot-analytics.com/state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/. 
  115. Attar, Hani; Issa, Haitham; Ababneh, Jafar; Abbasi, Mahdi; Solyman, Ahmed A. A.; Khosravi, Mohammad; Said Agieb, Ramy (2022-10-11). "5G System Overview for Ongoing Smart Applications: Structure, Requirements, and Specifications". Computational Intelligence and Neuroscience 2022: 1–11. doi:10.1155/2022/2476841. ISSN 1687-5273. PMID 36268153. 
  116. Proctor, Jason (April 29, 2019). "Why Canada's decisions on who builds 5G technology are so important". CBC News (Canadian Broadcasting Corporation). https://www.cbc.ca/news/canada/british-columbia/5g-canada-huawei-technology-future-1.5113309. 
  117. "Investigative Report on the U.S. National Security Issues Posed by Chinese Telecommunications Companies Huawei and ZTE". US House Permanent Select Committee on Intelligence. October 8, 2012. https://irp.fas.org/congress/2012_rpt/huawei.pdf. 
  118. "Huawei: China's Controversial Tech Giant" (in en). https://www.cfr.org/backgrounder/huawei-chinas-controversial-tech-giant. 
  119. Lillis, Katie Bo (2022-07-23). "CNN Exclusive: FBI investigation determined Chinese-made Huawei equipment could disrupt US nuclear arsenal communications | CNN Politics" (in en). https://www.cnn.com/2022/07/23/politics/fbi-investigation-huawei-china-defense-department-communications-nuclear/index.html. 
  120. Kharpal, Arjun (March 5, 2019). "Huawei says it would never hand data to China's government. Experts say it wouldn't have a choice" (in en). https://www.cnbc.com/2019/03/05/huawei-would-have-to-give-data-to-china-government-if-asked-experts.html. 
  121. Corera, Gordon (October 7, 2020). "Huawei: MPs claim 'clear evidence of collusion' with Chinese Communist Party". BBC News. https://www.bbc.com/news/technology-54455112. 
  122. "What's needed to keep 5G from compromising weather forecasts". September 29, 2020. https://gcn.com/articles/2020/09/29/weather-satellites-vs-5g.aspx. 
  123. Misra, Sidharth (January 10, 2019). "The Wizard Behind the Curtain? – The Important, Diverse, and Often Hidden Role of Spectrum Allocation for Current and Future Environmental Satellites and Water, Weather, and Climate". Phoenix, AZ: American Meteorological Society. https://ams.confex.com/ams/2019Annual/meetingapp.cgi/Paper/357736. Retrieved May 5, 2019. 
  124. Lubar, David G. (January 9, 2019). "A Myriad of Proposed Radio Spectrum Changes – Collectively Can They Impact Operational Meteorology?". Phoenix, AZ: American Meteorological Society. https://ams.confex.com/ams/2019Annual/meetingapp.cgi/Paper/352154. Retrieved May 5, 2019. 
  125. Witze, Alexandra (April 26, 2019). "Global 5G wireless networks threaten weather forecasts". Nature 569 (7754): 17–18. doi:10.1038/d41586-019-01305-4. PMID 31040411. Bibcode2019Natur.569...17W. 
  126. Brackett, Ron (May 1, 2019). "5G Wireless Networks Could Interfere with Weather Forecasts, Meteorologists Warn". The Weather Channel. https://weather.com/news/news/2019-04-30-5g-networks-interfere-with-weather-forecasts. 
  127. Samenow, Jason (March 8, 2019). "Critical weather data threatened by FCC 'spectrum' proposal, Commerce Dept. and NASA say". The Washington Post. https://www.washingtonpost.com/weather/2019/03/08/critical-weather-data-threatened-by-fcc-spectrum-proposal-say-department-commerce-nasa/. 
  128. Samenow, Jason (March 13, 2019). "FCC to auction off wireless spectrum that could interfere with vital weather data, rejecting requests from U.S. House and science agencies". The Washington Post. https://www.washingtonpost.com/weather/2019/03/13/fcc-auction-off-wireless-spectrum-that-could-interfere-with-vital-weather-data-rejecting-requests-us-house-science-agencies/. 
  129. Paul, Don (May 27, 2019). "Some worry 5G may pose huge problems for weather forecasting". The Buffalo Post. https://buffalonews.com/2019/05/27/some-worry-5g-may-pose-huge-problems-for-weather-forecasting/. 
  130. Witze, Alexandra (November 22, 2019). "Global 5G wireless deal threatens weather forecasts". Nature 575 (7784): 577. doi:10.1038/d41586-019-03609-x. PMID 31772363. Bibcode2019Natur.575..577W. 
  131. "WMO expresses concern about radio frequency decision" (Press release). Geneva, Switzerland: World Meteorological Organization. November 27, 2019. Retrieved November 30, 2019.
  132. Freedman, Andrew (November 26, 2019). "Global 5G deal poses significant threat to weather forecast accuracy, experts warn". The Washington Post. https://www.washingtonpost.com/weather/2019/11/22/global-g-deal-poses-significant-threat-weather-forecast-accuracy-experts-warn/. 
  133. "ECMWF statement on the outcomes of the ITU WRC-2019 conference" (Press release). Reading, UK: European Centre for Medium-Range Weather Forecasts. November 25, 2019. Archived from the original on January 8, 2021. Retrieved December 1, 2019.
  134. Freedman, Andrew (December 11, 2019). "'We are deeply concerned': House Science Committee seeks investigation of how 5G could hurt weather forecasting". The Washington Post. https://www.washingtonpost.com/weather/2019/12/11/we-are-deeply-concerned-house-science-committee-seeks-investigation-how-g-could-hurt-weather-forecasting/. 
  135. "5G altimeter interference: aviation versus telecoms" (in en-US). December 23, 2021. https://www.5gtechnologyworld.com/5g-altimeter-interference-aviation-versus-telecoms/. 
  136. "U.S. FAA Issues Safety Alert on 5G Interference to Aircraft". November 2, 2021. https://www.bloomberg.com/news/articles/2021-11-02/u-s-faa-issues-safety-alert-on-5g-interference-to-aircraft. 
  137. "Europe rolled out 5G without hurting aviation. Here's how". January 19, 2022. https://www.cnn.com/2022/01/19/business/5g-aviation-safety-europe/index.html. 
  138. "5G phones may interfere with aircraft: French regulator". February 16, 2021. https://www.france24.com/en/live-news/20210216-5g-phones-may-interfere-with-aircraft-french-regulator. 
  139. Shields, Todd; Levin, Allan (December 31, 2021). "Buttigieg Asks AT&T, Verizon to Delay 5G Over Aviation Concerns". Bloomberg News. https://www.bloomberg.com/news/articles/2022-01-01/buttigieg-asks-at-t-verizon-to-delay-5g-over-aviation-concerns. 
  140. "Wireless carriers to limit 5G near airports after airlines warn of major disruptions". Washington Post. January 18, 2022. https://www.washingtonpost.com/transportation/2022/01/18/airlines-disruptions-5g-verizon-att/. 
  141. "Verizon 5G Gets Activated Despite Warnings About Airport Problems; AT&T 5G Follows Suit". January 19, 2022. https://www.techtimes.com/articles/270795/20220119/verizon-5g-at-t-5g.htm. 
  142. "AT&T and Verizon are limiting C-band 5G expansion around airports even more". January 18, 2022. https://www.theverge.com/2022/1/18/22889664/att-5g-limits-c-band-expansion-airports-further-carrier-airline. 
  143. Federal Aviation Administration (January 21, 2022). "5G and Aviation Safety". https://www.faa.gov/5g. 
  144. Von Drehle, David (January 18, 2022). "Opinion: The FAA's 5G freakout raises a big red flag — about its competence". Washington Post. https://www.washingtonpost.com/opinions/2022/01/18/faa-5g-wireless-freakout-raises-red-flag/. 
  145. "Airlines cancel some flights after reduced 5G rollout in US". https://www.msn.com/en-gb/money/companies/major-airlines-cancel-change-flights-to-us-over-5g-dispute/ar-AASV5rg. 
  146. 147.0 147.1 "SatMagazine". http://www.satmagazine.com/story.php?number=2132459167. 
  147. Naik, Gaurang; Park, Jung-Min; Ashdown, Jonathan; Lehr, William (December 15, 2020). "Next Generation Wi-Fi and 5G NR-U in the 6 GHz Bands: Opportunities and Challenges". IEEE Access 8: 153027–56. doi:10.1109/ACCESS.2020.3016036. Bibcode2020IEEEA...8o3027N. https://ieeexplore.ieee.org/document/9165719. Retrieved December 4, 2021. 
  148. Johnson, Allison (April 29, 2021). "Dear wireless carriers: the 5G hype needs to stop". https://www.theverge.com/2021/4/29/22409675/verizon-att-tmobile-5g-mmwave-c-band. 
  149. Morris, Iain (February 28, 2017). "Vodafone CTO 'Worried' About 5G mmWave Hype". https://www.lightreading.com/mobile/spectrum/vodafone-cto-worried-about-5g-mmwave-hype/d/d-id/730679. 
  150. Chamberlain, Kendra (April 22, 2019). "T-Mobile says 5G mmWave deployments 'will never materially scale'". https://www.fiercewireless.com/5g/t-mobile-says-5g-mmwave-deployments-will-never-scale. 
  151. Blackman, James (December 5, 2019). "Why the 5G revolution is over-hyped nonsense – in every respect except one". https://enterpriseiotinsights.com/20191205/channels/fundamentals/why-5g-is-over-hyped-nonsense-in-every-respect-except-one. 
  152. "Cutting through the 5G hype | McKinsey". https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/cutting-through-the-5g-hype-survey-shows-telcos-nuanced-views. 
  153. "Expert Round Up: Is 5G Worth All the Hype? – GeoLinks.com". February 21, 2019. https://geolinks.com/is-5g-worth-all-the-hype/. 
  154. "5G isn't for everyone: How Alternate IoT Solutions come into play | Industrial Ethernet Book". https://iebmedia.com/technology/industrial-5g-wireless/5g-isnt-for-everyone-how-alternate-iot-solutions-come-into-play/. 
  155. "Consumers Want to Cut Through the Hype About 5G". https://www.pcmag.com/news/consumers-want-to-cut-through-the-hype-about-5g. 
  156. 157.0 157.1 157.2 157.3 Meese, James; Frith, Jordan; Wilken, Rowan (2020). "COVID-19, 5G conspiracies and infrastructural futures". Media International Australia 177 (1): 30–46. doi:10.1177/1329878X20952165. 
  157. "The Electromagnetic Spectrum: Non-Ionizing Radiation". United States Centers for Disease Control and Prevention. December 7, 2015. https://www.cdc.gov/nceh/radiation/nonionizing_radiation.html. 
  158. "Do mobile phones, 4G or 5G cause cancer?". Cancer Research UK. 8 February 2022. https://www.cancerresearchuk.org/about-cancer/causes-of-cancer/cancer-myths/do-mobile-phones-cause-cancer. 
  159. "FDA warns Mercola: Stop selling fake COVID remedies and cures". Alliance for Science. Cornell University. March 15, 2021. https://allianceforscience.cornell.edu/blog/2021/03/fda-warns-mercola-to-stop-selling-fake-covid-remedies-and-cures/. 
  160. Broad, William J. (July 16, 2019). "The 5G Health Hazard That Isn't". New York Times. https://www.nytimes.com/2019/07/16/science/5g-cellphones-wireless-cancer.html. 
  161. Broad, William J. (May 12, 2019). "Your 5G Phone Won't Hurt You. But Russia Wants You to Think Otherwise.". The New York Times. https://www.nytimes.com/2019/05/12/science/5g-phone-safety-health-russia.html. 
  162. "Brussels halts 5G plans over radiation rules". April 8, 2019. https://www.fiercewireless.com/5g/brussels-halts-5g-plans-over-radiation-rules. 
  163. "Schweiz: Genf stoppt Aufbau von 5G-Mobilfunkantennen" (in de). April 11, 2019. https://www.heise.de/newsticker/meldung/Schweiz-Vorlaeufiges-Verbot-von-5G-Mobilfunkantennen-in-Genf-4398114.html. 
  164. "5G Mobile Technology Fact Check". March 27, 2019. https://e3.marco.ch/publish/sunrise/821_3887/20190327_MM_asut_Faktencheck_5G-EN.pdf. 
  165. 166.0 166.1 166.2 "5G phones and your health: What you need to know". June 20, 2019. https://www.cnet.com/news/5g-phones-and-your-health-what-you-need-to-know/. 
  166. "Radiation concerns halt Brussels 5G development, for now". The Brussels Times. April 1, 2019. https://www.brusselstimes.com/brussels/55052/radiation-concerns-halt-brussels-5g-for-now/. 
  167. "Kamer wil eerst stralingsonderzoek, dan pas 5G-netwerk". Algemeen Dagblad. April 4, 2019. https://www.ad.nl/tech/kamer-wil-eerst-stralingsonderzoek-dan-pas-5g-netwerk~ab567cd6/. 
  168. "Switzerland to monitor potential health risks posed by 5G networks". Reuters. April 17, 2019. https://www.reuters.com/article/us-swiss-5g/switzerland-to-monitor-potential-health-risks-posed-by-5g-networks-idUSKCN1RT159. 
  169. "Bay Area city blocks 5G deployments over cancer concerns". TechCrunch. September 10, 2018. https://techcrunch.com/2018/09/10/bay-area-city-blocks-5g-deployments-over-cancer-concerns/. 
  170. Dillon, John (May 7, 2019). "Broadband Bill to Be Amended to Address Concerns Over 5G Technology". Vermont Public Radio (VPR). https://www.vpr.org/post/broadband-bill-be-amended-address-concerns-over-5g-technology. 
  171. "5G: What is it and how it will help us". https://smartmobtech.com/news/5g-what-is-it-and-how-will-it-help-us/. 
  172. Humphries, Will (October 12, 2019). "Councils block 5G as scare stories spread". The Times (London). https://www.thetimes.co.uk/article/councils-block-5g-as-scare-stories-spread-gnfgshn58. 
  173. "Brighton and Hove City Council join growing list of local authorities banning 5G masts". October 14, 2019. https://www.itpro.co.uk/network-internet/34621/brighton-and-hove-city-council-join-growing-list-of-local-authorities-banning. 
  174. "5G 'no more dangerous than talcum powder and pickled vegetables', says digital minister Matt Warman". The Telegraph (London). https://www.telegraph.co.uk/politics/2019/10/07/5g-no-dangerous-talcum-powder-pickled-vegetables-says-digital/. 
  175. 176.0 176.1 Levitt, Blake; Lai, Henry; Manville, Albert (2021). "Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment". Reviews on Environmental Health (Walter de Gruyter GmbH) 37 (1): 81–122. doi:10.1515/reveh-2021-0026. ISSN 0048-7554. PMID 34047144. 
  176. Simkó; Mattsson (2019-09-13). "5G Wireless Communication and Health Effects—A Pragmatic Review Based on Available Studies Regarding 6 to 100 GHz". International Journal of Environmental Research and Public Health (MDPI AG) 16 (18): 3406. doi:10.3390/ijerph16183406. ISSN 1660-4601. PMID 31540320. 
  177. Warren, Tom (April 4, 2020). "British 5G towers are being set on fire because of coronavirus conspiracy theories" (in en). https://www.theverge.com/2020/4/4/21207927/5g-towers-burning-uk-coronavirus-conspiracy-theory-link. 
  178. Murphy, Ann (April 23, 2020). "Update: Arson attack on Cork mast linked to false 5G conspiracy theory". Echo Live. https://www.echolive.ie/corknews/UPDATE-Arson-attack-on-Cork-mast-linked-to-false-5G-conspiracy-theory-077799f2-496b-49a0-ad5e-2c5524c30bd0-ds. 
  179. Fildes, Nic; Di Stefano, Mark; Murphy, Hannah (April 16, 2020). "How a 5G coronavirus conspiracy spread across Europe". Financial Times. https://www.ft.com/content/1eeedb71-d9dc-4b13-9b45-fcb7898ae9e1. 
  180. "Mast fire probe amid 5G coronavirus claims" (in en-GB). BBC News. April 4, 2020. https://www.bbc.com/news/uk-england-52164358. 
  181. "Bibinje: Nepoznati glupani oštetili odašiljač za kojeg su mislili da je 5G" (in hr). Seebiz. April 15, 2020. https://www.seebiz.eu/tehnologija/bibinje-nepoznati-glupani-ostetili-odasiljac-za-kojeg-su-mislili-da-je-5g/229876. 
  182. Cerulus, Laurens (April 26, 2020). "5G arsonists turn up in continental Europe" (in en). Politico. https://www.politico.com/news/2020/04/26/5g-mast-torchers-turn-up-in-continental-europe-210736. 
  183. Osborne, Charlie (April 30, 2020). "5G mast arson, coronavirus conspiracy theories force social media to walk a fine censorship line". https://www.zdnet.com/article/amid-5g-mast-arson-and-coronavirus-conspiracy-theories-social-media-walks-a-fine-line/. 
  184. Cheng, Roger (April 19, 2018). "AT&T brings higher speeds with pre-5G tech to 117 cities". https://cnet.com/news/at-t-brings-5g-evolution-not-real-5g-to-117-more-markets/. 
  185. Gartenberg, Chaim (April 25, 2017). "AT&T announces it will build a fake 5G network". https://theverge.com/2017/4/25/15425414/att-5g-evolution-network-lte-advanced-misleading-marketing. 
  186. Curie, M.; Mewhinney, M.; Cooper, S. (April 24, 2008). "NASA Ames Partners With M2MI For Small Satellite Development". https://www.nasa.gov/home/hqnews/2008/apr/HQ_08107_Ames_nanosat.html. 
  187. C.Sunitha; Deepika.G.Krishnan; V.A.Dhanya (January 2017). "Overview of Fifth Generation Networking". International Journal of Computer Trends and Technology (IJCTT) 43 (1). https://www.ijcttjournal.org/2017/Volume43/number-1/IJCTT-V43P107.pdf. Retrieved October 7, 2020. 
  188. "The world's first academic research center combining Wireless, Computing, and Medical Applications". NYU Wireless. June 20, 2014. http://nyuwireless.com/. 
  189. Kelly, Spencer (October 13, 2012). "BBC Click Programme – Kenya". BBC News Channel. http://www.bbc.co.uk/programmes/b01nhbzw. "Some of the world biggest telecoms firms have joined forces with the UK government to fund a new 5G research center. The facility, to be based at the University of Surrey, will offer testing facilities to operators keen to develop a mobile standard that uses less energy and less radio spectrum, while delivering faster speeds than current 4G technology that's been launched in around 100 countries, including several British cities. They say the new tech could be ready within a decade." 
  190. "The University Of Surrey Secures £35M For New 5G Research Centre". University of Surrey. October 8, 2012. http://www2.surrey.ac.uk/mediacentre/press/2012/90791_the_university_of_surrey_secures_35m_for_new_5g_research_centre.htm. 
  191. "5G research centre gets major funding grant". BBC News (BBC News Online). October 8, 2012. http://www.bbc.co.uk/news/technology-19871065. 
  192. Philipson, Alice (October 9, 2012). "Britain aims to join mobile broadband leaders with £35m '5G' research centre". The Daily Telegraph (London). http://www.telegraph.co.uk/technology/mobile-phones/9595641/Britain-aims-to-join-mobile-broadband-leaders-with-35m-5G-research-centre.html. 
  193. "METIS projet presentation". November 2012. https://www.metis2020.com/wp-content/uploads/deliverables/METIS_project_presentation_public_Old.pdf. 
  194. "Speech at Mobile World Congress: The Road to 5G". March 2015. https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_15_4535. 
  195. "5G Mobile Network Technology". April 2017. https://www.techmanza.in/5g-mobile-network-technology.html. 
  196. "삼성전자, 5세대 이동통신 핵심기술 세계 최초 개발". May 12, 2013. http://news.naver.com/main/ranking/read.nhn?mid=etc&sid1=111&date=20130512&rankingSectionId=105&rankingType=popular_day&rankingSeq=1&oid=001&aid=0006254810. 
  197. "General METIS presentations available for public". https://www.metis2020.com/documents/presentations/. 
  198. "India and Israel have agreed to work jointly on development of 5G". The Times Of India. July 25, 2013. http://timesofindia.indiatimes.com/tech/tech-news/internet/India-Israel-to-jointly-work-for-development-of-5G-technology/articleshow/21313938.cms. 
  199. "DoCoMo Wins CEATEC Award for 5G". October 3, 2013. http://wirelesswatch.jp/2013/10/03/docomo-wins-ceatec-award-for-5g/. 
  200. Embley, Jochan (November 6, 2013). "Huawei plans $600m investment in 10Gbps 5G network". The Independent (London). https://www.independent.co.uk/life-style/gadgets-and-tech/huawei-plans-600m-investment-in-10gbps-5g-network-8924124.html. 
  201. "South Korea to seize on world's first full 5G network". https://asia.nikkei.com/Spotlight/5G-networks/South-Korea-to-seize-on-world-s-first-full-5G-network. 
  202. "US dismisses South Korea's launch of world-first 5G network as 'stunt' – 5G – The Guardian". April 4, 2019. https://www.theguardian.com/technology/2019/apr/04/us-dismisses-south-koreas-launch-of-world-first-5g-network-as-stunt. 
  203. "5G 첫날부터 4만 가입자…3가지 가입포인트". April 6, 2019. http://view.asiae.co.kr/news/view.htm?idxno=2019040610062165080. 
  204. "Globe 5G – The Latest Broadband Technology". https://bb.globe.com.ph/5g/. 
  205. "AT&T Begins Extending 5G Services Across the U.S." (in en-US). https://about.att.com/story/2019/att_5g_leadership.html. 
  206. Blumenthal, Eli. "AT&T's next 5G network is going live in December, but don't expect big jumps in speed" (in en). https://www.cnet.com/news/at-ts-next-5g-network-is-going-live-in-december-but-dont-expect-big-jumps-in-speed/. 
  207. GUL, NAJAM (2022-12-26). "5G! GOOD OR BAD?" (in en). https://www.deepcurious.com/5g-good-or-bad. 
  208. Stuart Corner (March 16, 2022). "The state of 5G in Southeast Asia 2022, country-by-country guide". networkworld.com. https://www.networkworld.com/article/3651672/the-state-of-5g-in-southeast-asia-2022-country-by-country-guide.html. 
  209. Phoonphongphiphat, Apornrath (2020-05-20). "Thailand leads ASEAN in 5G rollout due to pandemic". https://asia.nikkei.com/Spotlight/5G-networks/Thailand-leads-ASEAN-in-5G-rollout-due-to-pandemic. 
  210. "Назаров Александр: биография заместителя генерального директора "Ростеха"". https://theperson.pro/aleksandr-nazarov-biografiya-zamglavy-rosteha/. 
  211. "Назаров Александр Юрьевич и Игорь Анатольевич Шумаков подписали соглашение". http://www.kremlinrus.ru/article/1077/131953/. 
  212. "5GAA, Audi, Ford and Qualcomm Showcase C-V2X Direct Communications Interoperability to Improve Road Safety". https://www.newswire.ca/news-releases/5gaa-audi-ford-and-qualcomm-showcase-c-v2x-direct-communications-interoperability-to-improve-road-safety-680937731.html. 
  213. "5G-Powered Digital Twin: 5G Use Cases" (in en). https://www.verizon.com/business/resources/5g/5g-business-use-cases/business-intelligence/digital-twin/. 
  214. "The Promise of 5G for Public Safety". https://emsworld.com/commentary/1221807/promise-5g-public-safety. 
  215. Fulton III, Scott. "What is 5G? All you need to know about the next generation of wireless technology". https://www.zdnet.com/article/what-is-5g-everything-you-need-to-know/. 
  216. "5G Fixed Wireless Access (FWA) technology | What Is It?". https://5g.co.uk/guides/what-is-5g-fixed-wireless-access-fwa/. 
  217. "Sony and Verizon Demonstrate 5G transmission for covering live sports". January 11, 2020. https://www.newsshooter.com/2020/01/11/sony-and-verizon-demonstrate-5g-transmission-for-covering-live-sports/. 
  218. "Technology behind the project" (in en-US). https://5g-today.de/technology-behind-the-project/?lang=en. 

Further reading

External links

Preceded by
4th Generation (4G)
Mobile telephony generations Succeeded by
6th Generation (6G)