Biology:List of homing endonuclease cutting sites

From HandWiki
Revision as of 20:14, 10 August 2022 by imported>Jport (correction)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: None
Legend of nucleobases
Code Nucleotide represented
A Adenine (A)
C Cytosine (C)
G Guanine (G)
T Thymine (T)
N A, C, G or T
M A or C
R A or G
W A or T
Y C or T
S C or G
K G or T
H A, C or T
B C, G or T
V A, C or G
D A, G or T

The homing endonucleases are a special type of restriction enzymes encoded by introns or inteins. They act on the cellular DNA of the cell that synthesizes them; to be precise, in the opposite allele of the gene that encode them.[1]

Homing endonucleases

The list includes some of the most studied examples. The following concepts have been detailed:

  • Enzyme: Accepted name of the molecule, according to the internationally adopted nomenclature. Bibliographical references. (Further reading: Homing endonuclease § Nomenclature.)
  • SF (structural family): Any of the established families for this kind of proteins, based in their shared structural motifs: H1: LAGLIDADG family – H2: GIY-YIG family – H3: H-N-H family – H4: His-Cys box family – H5: PD-(D/E)xK – H6: EDxHD. (Further reading: Homing endonuclease § Structural families.)
  • PDB code: Code used to identify the structure of a protein in the PDB database. If no structure is available, a UniProt identifier is given instead.
  • Source: Organism that naturally produces the enzyme.
  • D: Biological domain of the source: A: archaea – B: bacteria – E: eukarya.
  • SCL: Subcellular genome: chloro: chloroplast – chrm: chromosomal – mito: mitochondrial – plasmid: other extrachromosomal – phage: bacteriophage.
  • Recognition sequence: Sequence of DNA recognized by the enzyme. The enzyme is specifically bound to this sequence.
  • Cut: Cutting site and products of the cut. Both the recognition sequence and the cutting site match usually, but sometimes the cutting site can be dozens of nucleotides away from the recognition site.
Enzyme SF PDB code Source D SCL Recognition sequence Cut
I-AniI[2] H1 1P8K Aspergillus nidulans E mito 5' TTGAGGAGGTTTCTCTGTAAATAA
3' AACTCCTCCAAAGAGACATTTATT
5' ---TTGAGGAGGTTTC   TCTGTAAATAA--- 3'
3' ---AACTCCTCC   AAAGAGACATTTATT--- 5'
I-CeuI[3][4][5][6] H1 2EX5 Chlamydomonas eugametos E chloro 5' TAACTATAACGGTCCTAAGGTAGCGA
3' ATTGATATTGCCAGGATTCCATCGCT
5' ---TAACTATAACGGTCCTAA   GGTAGCGA--- 3'
3' ---ATTGATATTGCCAG   GATTCCATCGCT--- 5'
I-ChuI[7][8] H1 Chlamydomonas humicola E chloro 5' GAAGGTTTGGCACCTCGATGTCGGCTCATC
3' CTTCCAAACCGTGGAGCTACAGCCGAGTAG
5' ---GAAGGTTTGGCACCTCG   ATGTCGGCTCATC--- 3'
3' ---CTTCCAAACCGTG   GAGCTACAGCCGAGTAG--- 5'
I-CpaI[8][9] H1 Chlamydomonas pallidostigmata E chloro 5' CGATCCTAAGGTAGCGAAATTCA
3' GCTAGGATTCCATCGCTTTAAGT
5' ---CGATCCTAAGGTAGCGAA   ATTCA--- 3'
3' ---GCTAGGATTCCATC   GCTTTAAGT--- 5'
I-CpaII[10] H1 Chlamydomonas pallidostigmata E chloro 5' CCCGGCTAACTCTGTGCCAG
3' GGGCCGATTGAGACACGGTC
5' ---CCCGGCTAACTC   TGTGCCAG--- 3'
5' ---GGGCCGAT   TGAGACACGGTC--- 3'
I-CreI[11] H1 1BP7 Chlamydomonas reinhardtii E chloro 5' CTGGGTTCAAAACGTCGTGAGACAGTTTGG
3' GACCCAAGTTTTGCAGCACTCTGTCAAACC
5' ---CTGGGTTCAAAACGTCGTGA   GACAGTTTGG--- 3'
3' ---GACCCAAGTTTTGCAG   CACTCTGTCAAACC--- 5'
I-DmoI H1 1B24 Desulfurococcus mobilis A chrm 5' ATGCCTTGCCGGGTAAGTTCCGGCGCGCAT
3' TACGGAACGGCCCATTCAAGGCCGCGCGTA
5' ---ATGCCTTGCCGGGTAA   GTTCCGGCGCGCAT--- 3'
3' ---TACGGAACGGCC   CATTCAAGGCCGCGCGTA--- 5'
H-DreI[12] H1 1MOW Hybrid: I-DmoI and I-CreI AE 5' CAAAACGTCGTAAGTTCCGGCGCG
3' GTTTTGCAGCATTCAAGGCCGCGC
5' ---CAAAACGTCGTAA   GTTCCGGCGCG--- 3'
3' ---GTTTTGCAG   CATTCAAGGCCGCGC--- 5'
I-HmuI[13][14] H3 1U3E Bacillus subtilis phage SP01 B phage 5' AGTAATGAGCCTAACGCTCAGCAA
3' TCATTACTCGGATTGCGAGTCGTT
  Nicking endonuclease: *
  3' ---TCATTACTCGGATTGC   GAGTCGTT--- 5'
I-HmuII[14][15] H3 Bacillus subtilis phage SP82 B phage 5' AGTAATGAGCCTAACGCTCAACAA
3' TCATTACTCGGATTGCGAGTTGTT
  Nicking endonuclease: *
  3' ---TCATTACTCGGATTGCGAGTTGTTN35   NNNN--- 5'
I-LlaI[16][17] H3 Lactococcus lactis B chrm 5' CACATCCATAACCATATCATTTTT
3' GTGTAGGTATTGGTATAGTAAAAA
5' ---CACATCCATAA   CCATATCATTTTT--- 3'
3' ---GTGTAGGTATTGGTATAGTAA   AAA--- 5'
I-MsoI H1 1M5X Monomastix sp. E 5' CTGGGTTCAAAACGTCGTGAGACAGTTTGG
3' GACCCAAGTTTTGCAGCACTCTGTCAAACC
5' ---CTGGGTTCAAAACGTCGTGA   GACAGTTTGG--- 3'
3' ---GACCCAAGTTTTGCAG   CACTCTGTCAAACC--- 5'
PI-PfuI H1 1DQ3 Pyrococcus furiosus Vc1 A 5' GAAGATGGGAGGAGGGACCGGACTCAACTT
3' CTTCTACCCTCCTCCCTGGCCTGAGTTGAA
5' ---GAAGATGGGAGGAGGG   ACCGGACTCAACTT--- 3'
3' ---CTTCTACCCTCC   TCCCTGGCCTGAGTTGAA--- 5'
PI-PkoII H1 2CW7 Pyrococcus kodakarensis BAA-918 A 5' CAGTACTACGGTTAC
3' GTCATGATGCCAATG
5' ---CAGTACTACG  GTTAC--- 3'
3' ---GTCATG  ATGCCAATG--- 5'
I-PorI[18][19] H3 Pyrobaculum organotrophum A chrm 5' GCGAGCCCGTAAGGGTGTGTACGGG
3' CGCTCGGGCATTCCCACACATGCCC
5' ---GCGAGCCCGTAAGGGT   GTGTACGGG--- 3'
3' ---CGCTCGGGCATT   CCCACACATGCCC--- 5'
I-PpoI H4 1EVX Physarum polycephalum E plasmid 5' TAACTATGACTCTCTTAAGGTAGCCAAAT
3' ATTGATACTGAGAGAATTCCATCGGTTTA
5' ---TAACTATGACTCTCTTAA   GGTAGCCAAAT--- 3'
3' ---ATTGATACTGAGAG   AATTCCATCGGTTTA--- 5'
PI-PspI H1 Q51334 Pyrococcus sp. A chrm 5' TGGCAAACAGCTATTATGGGTATTATGGGT
3' ACCGTTTGTCGATAATACCCATAATACCCA
5' ---TGGCAAACAGCTATTAT   GGGTATTATGGGT--- 3'
3' ---ACCGTTTGTCGAT   AATACCCATAATACCCA--- 5'
I-ScaI[20][21] H1 Saccharomyces capensis E mito 5' TGTCACATTGAGGTGCACTAGTTATTAC
3' ACAGTGTAACTCCACGTGATCAATAATG
5' ---TGTCACATTGAGGTGCACT   AGTTATTAC--- 3'
3' ---ACAGTGTAACTCCAC   GTGATCAATAATG--- 5'
I-SceI[4][5] H1 1R7M Saccharomyces cerevisiae E mito 5' AGTTACGCTAGGGATAACAGGGTAATATAG
3' TCAATGCGATCCCTATTGTCCCATTATATC
5' ---AGTTACGCTAGGGATAA   CAGGGTAATATAG--- 3'
3' ---TCAATGCGATCCC   TATTGTCCCATTATATC--- 5'
PI-SceI[22][23] H1 1VDE Saccharomyces cerevisiae E 5' ATCTATGTCGGGTGCGGAGAAAGAGGTAATGAAATGGCA
3' TAGATACAGCCCACGCCTCTTTCTCCATTACTTTACCGT
5' ---ATCTATGTCGGGTGC   GGAGAAAGAGGTAATGAAATGGCA--- 3'
3' ---TAGATACAGCC   CACGCCTCTTTCTCCATTACTTTACCGT--- 5'
I-SceII[24][25][26] H1 Saccharomyces cerevisiae E mito 5' TTTTGATTCTTTGGTCACCCTGAAGTATA
3' AAAACTAAGAAACCAGTGGGACTTCATAT
5' ---TTTTGATTCTTTGGTCACCC   TGAAGTATA--- 3'
3' ---AAAACTAAGAAACCAG   TGGGACTTCATAT--- 5'
I-SecIII[24][27][28] H1 Saccharomyces cerevisiae E mito 5' ATTGGAGGTTTTGGTAACTATTTATTACC
3' TAACCTCCAAAACCATTGATAAATAATGG
5' ---ATTGGAGGTTTTGGTAAC   TATTTATTACC--- 3'
3' ---TAACCTCCAAAACC   ATTGATAAATAATGG--- 5'
I-SceIV[24][29][30] H1 Saccharomyces cerevisiae E mito 5' TCTTTTCTCTTGATTAGCCCTAATCTACG
3' AGAAAAGAGAACTAATCGGGATTAGATGC
5' ---TCTTTTCTCTTGATTA   GCCCTAATCTACG--- 3'
3' ---AGAAAAGAGAAC   TAATCGGGATTAGATGC--- 5'
I-SceV[24][31] H3 Saccharomyces cerevisiae E mito 5' AATAATTTTCTTCTTAGTAATGCC
3' TTATTAAAAGAAGAATCATTACGG
5' ---AATAATTTTCT   TCTTAGTAATGCC--- 3'
3' ---TTATTAAAAGAAGAATCATTA   CGG--- 5'
I-SceVI[24][32] H3 Saccharomyces cerevisiae E mito 5' GTTATTTAATGTTTTAGTAGTTGG
3' CAATAAATTACAAAATCATCAACC
5' ---GTTATTTAATG   TTTTAGTAGTTGG--- 3'
3' ---CAATAAATTACAAAATCATCA   ACC--- 5'
I-SceVII[20] H1 Saccharomyces cerevisiae E mito 5' TGTCACATTGAGGTGCACTAGTTATTAC
3' ACAGTGTAACTCCACGTGATCAATAATG
  Unknown **
I-Ssp6803I H5 2OST Synechocystis sp. PCC 6803 B 5' GTCGGGCTCATAACCCGAA
3' CAGCCCGAGTATTGGGCTT
5' ---GTCGGGCT   CATAACCCGAA--- 3'
3' ---CAGCCCGAGTA   TTGGGCTT--- 5'
H2 1I3J Escherichia coli phage T4 B phage 5' AGTGGTATCAACGCTCAGTAGATG
3' TCACCATAGT TGCGAGTCATCTAC
5' ---AGTGGTATCAAC   GCTCAGTAGATG--- 3'
3' ---TCACCATAGT   TGCGAGTCATCTAC--- 5'
I-TevII[33][34] H2 Escherichia coli phage T4 B phage 5' GCTTATGAGTATGAAGTGAACACGTTATTC
3' CGAATACTCATACTTCACTTGTGCAATAAG
5' ---GCTTATGAGTATGAAGTGAACACGT   TATTC--- 3'
3' ---CGAATACTCATACTTCACTTGTG   CAATAAG--- 5'
I-TevIII[35] H3 Escherichia coli phage RB3 B phage 5' TATGTATCTTTTGCGTGTACCTTTAACTTC
3' ATACATAGAAAACGCACATGGAAATTGAAG
5' ---T   ATGTATCTTTTGCGTGTACCTTTAACTTC--- 3'
3' ---AT   ACATAGAAAACGCACATGGAAATTGAAG--- 5'
PI-TliI[36][37] H1 Thermococcus litoralis A chrm 5' TAYGCNGAYACNGACGGYTTYT
3' ATRCGNCTRTGNCTGCCTAARA
5' ---TAYGCNGAYACNGACGG   YTTYT--- 3'
3' ---ATRCGNCTRTGNC   TGCCTAARA--- 5'
PI-TliII[22][37][38] H1 Thermococcus litoralis A chrm 5' AAATTGCTTGCAAACAGCTATTACGGCTAT
3' TTTAACGAACGTTTGTCGATAATGCCGATA
  Unknown **
I-Tsp061I H1 2DCH Thermoproteus sp. IC-061 A 5' CTTCAGTATGCCCCGAAAC
3' GAAGTCATACGGGGCTTTG
5' ---CTTCAGTAT   GCCCCGAAAC--- 3'
3' ---GAAGT   CATACGGGGCTTTG--- 5'
I-Vdi141I H1 3E54 Vulcanisaeta distributa IC-141 A 5' CCTGACTCTCTTAAGGTAGCCAAA
3' GGACTGAGAGAATTCCATCGGTTT
5' ---CCTGACTCTCTTAA   GGTAGCCAAA--- 3'
3' ---GGACTGAG   AGAATTCCATCGGTTT--- 5'

*: Nicking endonuclease: These enzymes cut only one DNA strand, leaving the other strand untouched.
**: Unknown cutting site: Researchers have not been able to determine the exact cutting site of these enzymes yet.

See also

Information sources

Databases and lists of restriction enzymes:

Databases of proteins:

  • Database of protein structures, solved at atomic resolution: "PDB". Research Collaboratory for Structural Bioinformatics (RCSB). http://www.pdb.org. Retrieved 2010-01-25. "RCSB Protein Data Bank." 
  • Databases of proteins: Swiss Institute of Bioinformatics (SIB); European Bioinformatics Institute (EBI). "UniProtKB/Swiss-Prot & TrEMBL". http://www.expasy.ch/sprot. Retrieved 2010-01-25. "Swiss-Prot is a curated protein sequence database which strives to provide a high level of annotation (such as the description of the function of a protein, its domains structure, post-translational modifications, variants, etc.), a minimal level of redundancy and high level of integration with other databases. TrEMBL is a computer-annotated supplement of Swiss-Prot that contains all the translations of EMBL nucleotide sequence entries not yet integrated in Swiss-Prot." 

Notes and references

  1. "Introns as mobile genetic elements". Annu Rev Biochem 62: 587–622. 1993. doi:10.1146/annurev.bi.62.070193.003103. PMID 8352597. 
  2. "Selfish behavior of restriction-modification systems". Science 267 (5199): 897–99. February 1995. doi:10.1126/science.7846533. PMID 7846533. Bibcode1995Sci...267..897N. 
  3. "An intron-encoded protein is active in a gene conversion process that spreads an intron into a mitochondrial gene". Cell 41 (2): 383–94. June 1985. doi:10.1016/S0092-8674(85)80011-8. PMID 3886163. 
  4. 4.0 4.1 "A group I intron in the chloroplast large subunit rRNA gene of Chlamydomonas eugametos encodes a double-strand endonuclease that cleaves the homing site of this intron". Curr Genet 19 (1): 43–47. January 1991. doi:10.1007/BF00362086. PMID 2036685. 
  5. 5.0 5.1 "Cleavage pattern of the homing endonuclease encoded by the fifth intron in the chloroplast large subunit rRNA-encoding gene of Chlamydomonas eugametos". Gene 104 (2): 241–5. August 1991. doi:10.1016/0378-1119(91)90256-B. PMID 1916294. 
  6. "Six group I introns and three internal transcribed spacers in the chloroplast large subunit ribosomal RNA gene of the green alga Chlamydomonas eugametos". J Mol Biol 218 (2): 293–311. March 1991. doi:10.1016/0022-2836(91)90713-G. PMID 1849178. 
  7. "The single group-I intron in the chloroplast rrnL gene of Chlamydomonas humicola encodes a site-specific DNA endonuclease (I-ChuI)". Gene 129 (1): 69–76. July 1993. doi:10.1016/0378-1119(93)90697-2. PMID 8335261. 
  8. 8.0 8.1 "Analysis of the chloroplast large subunit ribosomal RNA gene from 17 Chlamydomonas taxa. Three internal transcribed spacers and 12 group I intron insertion sites". J Mol Biol 232 (2): 446–67. July 1993. doi:10.1006/jmbi.1993.1402. PMID 8393936. 
  9. "Evolutionary transfer of ORF-containing group I introns between different subcellular compartments (chloroplast and mitochondrion)". Mol Biol Evol 12 (4): 533–45. July 1995. doi:10.1093/oxfordjournals.molbev.a040234. PMID 7659010. 
  10. "The site-specific DNA endonuclease encoded by a group I intron in the Chlamydomonas pallidostigmatica chloroplast small subunit rRNA gene introduces a single-strand break at low concentrations of Mg2+". Nucleic Acids Res 23 (13): 2519–25. July 1995. doi:10.1093/nar/23.13.2519. PMID 7630730. 
  11. "DNA recognition and cleavage by the LAGLIDADG homing endonuclease I-CreI". Mol. Cell 2 (4): 469–76. October 1998. doi:10.1016/S1097-2765(00)80146-X. PMID 9809068. 
  12. "Design, activity, and structure of a highly specific artificial endonuclease". Mol. Cell 10 (4): 895–905. October 2002. doi:10.1016/S1097-2765(02)00690-1. PMID 12419232. 
  13. "A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1". Cell 63 (2): 417–24. October 1990. doi:10.1016/0092-8674(90)90174-D. PMID 2119891. 
  14. 14.0 14.1 "Beyond homing: competition between intron endonucleases confers a selective advantage on flanking genetic markers". Cell 84 (2): 211–21. January 1996. doi:10.1016/S0092-8674(00)80976-9. PMID 8565067. 
  15. "The DNA polymerase genes of several HMU-bacteriophages have similar group I introns with highly divergent open reading frames". Nucleic Acids Res 22 (18): 3715–21. September 1994. doi:10.1093/nar/22.18.3715. PMID 7937082. 
  16. "Splicing of a group II intron in a functional transfer gene of Lactococcus lactis". Mol Microbiol 21 (1): 45–53. July 1996. doi:10.1046/j.1365-2958.1996.00610.x. PMID 8843433. 
  17. "Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci". J Bacteriol 178 (12): 3531–8. June 1996. doi:10.1128/jb.178.12.3531-3538.1996. PMID 8655550. 
  18. "DNA substrate specificity and cleavage kinetics of an archaeal homing-type endonuclease from Pyrobaculum organotrophum". Nucleic Acids Res 22 (22): 4583–90. November 1994. doi:10.1093/nar/22.22.4583. PMID 7984405. 
  19. "Protein-coding introns from the 23S rRNA-encoding gene form stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum". Gene 121 (1): 103–10. November 1992. doi:10.1016/0378-1119(92)90167-N. PMID 1427083. 
  20. 20.0 20.1 "Replacement of two non-adjacent amino acids in the S.cerevisiae bi2 intron-encoded RNA maturase is sufficient to gain a homing-endonuclease activity". EMBO J 15 (14): 3758–67. July 1996. doi:10.1002/j.1460-2075.1996.tb00746.x. PMID 8670880. 
  21. "Two homologous mitochondrial introns from closely related Saccharomyces species differ by only a few amino acid replacements in their Open Reading Frames: one is mobile, the other is not". C. R. Acad. Sci. Paris 315 (2): 37–41. 1992. PMID 1330224. 
  22. 22.0 22.1 "Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase". Science 250 (4981): 651–7. November 1990. doi:10.1126/science.2146742. PMID 2146742. Bibcode1990Sci...250..651K. 
  23. "Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae". Nature 357 (6376): 301–6. May 1992. doi:10.1038/357301a0. PMID 1534148. Bibcode1992Natur.357..301G. 
  24. 24.0 24.1 24.2 24.3 24.4 "Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrme oxidase". J Biol Chem 255 (24): 11927–41. December 1980. doi:10.1016/S0021-9258(19)70224-5. PMID 6254986. 
  25. "Evidence for translated intervening sequences in the mitochondrial genome of Saccharomyces cerevisiae". J Biol Chem 257 (6): 3218–24. March 1982. doi:10.1016/S0021-9258(19)81098-0. PMID 6277926. 
  26. "Site-specific DNA endonuclease and RNA maturase activities of two homologous intron-encoded proteins from yeast mitochondria". Cell 56 (3): 431–41. February 1989. doi:10.1016/0092-8674(89)90246-8. PMID 2536593. 
  27. "A new specific DNA endonuclease activity in yeast mitochondria". Mol Gen Genet 225 (2): 340–1. February 1991. doi:10.1007/BF00269867. PMID 1848651. 
  28. "I-Sce III: a novel group I intron-encoded endonuclease from the yeast mitochondria". Nucleic Acids Res 21 (2): 358. January 1993. doi:10.1093/nar/21.2.358. PMID 8441645. 
  29. "Intron 5 alpha of the COXI gene of yeast mitochondrial DNA is a mobile group I intron". Nucleic Acids Res 20 (15): 4069–76. August 1992. doi:10.1093/nar/20.15.4069. PMID 1324475. 
  30. "The yeast mitochondrial intron aI5 alpha: associated endonuclease activity and in vivo mobility". Gene 113 (1): 1–8. April 1992. doi:10.1016/0378-1119(92)90663-A. PMID 1314207. 
  31. "Chromosomal double-strand break repair in Ku80-deficient cells". PNAS 93 (17): 8929–33. August 1996. doi:10.1073/pnas.93.17.8929. PMID 8799130. Bibcode1996PNAS...93.8929L. 
  32. "Efficient integration of an intron RNA into double-stranded DNA by reverse splicing". Nature 381 (6580): 332–5. May 1996. doi:10.1038/381332a0. PMID 8692273. Bibcode1996Natur.381..332Y. 
  33. Cite error: Invalid <ref> tag; no text was provided for refs named pmid2165250
  34. "Structural conservation among three homologous introns of bacteriophage T4 and the group I introns of eukaryotes". PNAS 85 (4): 1151–5. February 1988. doi:10.1073/pnas.85.4.1151. PMID 3422485. Bibcode1988PNAS...85.1151S. 
  35. "The phage T4 nrdB intron: a deletion mutant of a version found in the wild". Genes Dev 5 (6): 1032–41. June 1991. doi:10.1101/gad.5.6.1032. PMID 2044951. 
  36. "In vitro protein splicing of purified precursor and the identification of a branched intermediate". Cell 75 (7): 1371–7. December 1993. doi:10.1016/0092-8674(93)90623-X. PMID 8269515. 
  37. 37.0 37.1 "Intervening sequences in an Archaea DNA polymerase gene". PNAS 89 (12): 5577–81. June 1992. doi:10.1073/pnas.89.12.5577. PMID 1608969. Bibcode1992PNAS...89.5577P. 
  38. "Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae". J Biol Chem 265 (12): 6726–33. April 1990. doi:10.1016/S0021-9258(19)39210-5. PMID 2139027. 
  39. Perler FB (January 2002). "InBase: the Intein Database". Nucleic Acids Res 30 (1): 383–4. doi:10.1093/nar/30.1.383. PMID 11752343.