Triangular tiling honeycomb

From HandWiki
Revision as of 13:48, 6 February 2024 by Jworkorg (talk | contribs) (simplify)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Triangular tiling honeycomb
H3 363 FC boundary.png
Type Hyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbol {3,6,3}
h{6,3,6}
h{6,3[3]} ↔ {3[3,3]}
Coxeter-Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png
CDel node h1.pngCDel 6.pngCDel node.pngCDel split1.pngCDel branch.pngCDel node 1.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node h0.png
Cells {3,6} Uniform tiling 63-t2.png Uniform tiling 333-t1.png
Faces triangle {3}
Edge figure triangle {3}
Vertex figure Uniform tiling 63-t0.png 40px 40px
hexagonal tiling
Dual Self-dual
Coxeter groups [math]\displaystyle{ \overline{Y}_3 }[/math], [3,6,3]
[math]\displaystyle{ \overline{VP}_3 }[/math], [6,3[3]]
[math]\displaystyle{ \overline{PP}_3 }[/math], [3[3,3]]
Properties Regular

The triangular tiling honeycomb is one of 11 paracompact regular space-filling tessellations (or honeycombs) in hyperbolic 3-space. It is called paracompact because it has infinite cells and vertex figures, with all vertices as ideal points at infinity. It has Schläfli symbol {3,6,3}, being composed of triangular tiling cells. Each edge of the honeycomb is surrounded by three cells, and each vertex is ideal with infinitely many cells meeting there. Its vertex figure is a hexagonal tiling.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry

Subgroups of [3,6,3] and [6,3,6]

It has two lower reflective symmetry constructions, as an alternated order-6 hexagonal tiling honeycomb, CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png, and as CDel node 1.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.png from CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png, which alternates 3 types (colors) of triangular tilings around every edge. In Coxeter notation, the removal of the 3rd and 4th mirrors, [3,6,3*] creates a new Coxeter group [3[3,3]], CDel node.pngCDel splitsplit1.pngCDel branch4.pngCDel splitsplit2.pngCDel node.png, subgroup index 6. The fundamental domain is 6 times larger. By Coxeter diagram there are 3 copies of the first original mirror in the new fundamental domain: CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel node c2.pngCDel splitsplit1.pngCDel branch4 c1.pngCDel splitsplit2.pngCDel node c1.png.

Related Tilings

It is similar to the 2D hyperbolic infinite-order apeirogonal tiling, {∞,∞}, with infinite apeirogonal faces, and with all vertices on the ideal surface.

H2 tiling 2ii-4.png

Related honeycombs

The triangular tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of eleven paracompact honeycombs.

There are nine uniform honeycombs in the [3,6,3] Coxeter group family, including this regular form as well as the bitruncated form, t1,2{3,6,3}, CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png with all truncated hexagonal tiling facets.

The honeycomb is also part of a series of polychora and honeycombs with triangular edge figures.

Rectified triangular tiling honeycomb

Rectified triangular tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol r{3,6,3}
h2{6,3,6}
Coxeter diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.png
CDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node 1.pngCDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node h0.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.png
Cells r{3,6} Uniform polyhedron-63-t1.png
{6,3} Uniform polyhedron-63-t0.png
Faces triangle {3}
hexagon {6}
Vertex figure Rectified triangular tiling honeycomb verf.png
triangular prism
Coxeter group [math]\displaystyle{ \overline{Y}_3 }[/math], [3,6,3]
[math]\displaystyle{ \overline{VP}_3 }[/math], [6,3[3]]
[math]\displaystyle{ \overline{PP}_3 }[/math], [3[3,3]]
Properties Vertex-transitive, edge-transitive

The rectified triangular tiling honeycomb, CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png, has trihexagonal tiling and hexagonal tiling cells, with a triangular prism vertex figure.

Symmetry

A lower symmetry of this honeycomb can be constructed as a cantic order-6 hexagonal tiling honeycomb, CDel branch 10ru.pngCDel split2.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.png. A second lower-index construction is CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel node.pngCDel splitsplit1.pngCDel branch4 11.pngCDel splitsplit2.pngCDel node 1.png.

H3 363 boundary 0100.png

Truncated triangular tiling honeycomb

Truncated triangular tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t{3,6,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Cells t{3,6} Uniform polyhedron-63-t12.png
{6,3} Uniform polyhedron-63-t0.png
Faces hexagon {6}
Vertex figure Truncated triangular tiling honeycomb verf.png
tetrahedron
Coxeter group [math]\displaystyle{ \overline{Y}_3 }[/math], [3,6,3]
[math]\displaystyle{ \overline{V}_3 }[/math], [3,3,6]
Properties Regular

The truncated triangular tiling honeycomb, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png, is a lower-symmetry form of the hexagonal tiling honeycomb, CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png. It contains hexagonal tiling facets with a tetrahedral vertex figure.

H3 363-1100.png

Bitruncated triangular tiling honeycomb

Bitruncated triangular tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol 2t{3,6,3}
Coxeter diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells t{6,3} Uniform polyhedron-63-t01.png
Faces triangle {3}
dodecagon {12}
Vertex figure Bitruncated triangular tiling honeycomb verf.png
tetragonal disphenoid
Coxeter group [math]\displaystyle{ 2\times\overline{Y}_3 }[/math], 3,6,3
Properties Vertex-transitive, edge-transitive, cell-transitive

The bitruncated triangular tiling honeycomb, CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png, has truncated hexagonal tiling cells, with a tetragonal disphenoid vertex figure.

H3 363-0110.png

Cantellated triangular tiling honeycomb

Cantellated triangular tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol rr{3,6,3} or t0,2{3,6,3}
s2{3,6,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells rr{6,3} Uniform polyhedron-63-t02.png
r{6,3} 40px
{}×{3} Triangular prism.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Cantellated triangular tiling honeycomb verf.png
wedge
Coxeter group [math]\displaystyle{ \overline{Y}_3 }[/math], [3,6,3]
Properties Vertex-transitive

The cantellated triangular tiling honeycomb, CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png, has rhombitrihexagonal tiling, trihexagonal tiling, and triangular prism cells, with a wedge vertex figure.

Symmetry

It can also be constructed as a cantic snub triangular tiling honeycomb, CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png, a half-symmetry form with symmetry [3+,6,3].

H3 363-1010.png

Cantitruncated triangular tiling honeycomb

Cantitruncated triangular tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol tr{3,6,3} or t0,1,2{3,6,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Cells tr{6,3} Uniform polyhedron-63-t012.png
t{6,3} 40px
{}×{3} Triangular prism.png
Faces triangle {3}
square {4}
hexagon {6}
dodecagon {12}
Vertex figure Cantitruncated triangular tiling honeycomb verf.png
mirrored sphenoid
Coxeter group [math]\displaystyle{ \overline{Y}_3 }[/math], [3,6,3]
Properties Vertex-transitive

The cantitruncated triangular tiling honeycomb, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png, has truncated trihexagonal tiling, truncated hexagonal tiling, and triangular prism cells, with a mirrored sphenoid vertex figure.

H3 363-1110.png

Runcinated triangular tiling honeycomb

Runcinated triangular tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,3{3,6,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells {3,6} Uniform polyhedron-63-t2.png
{}×{3} Triangular prism.png
Faces triangle {3}
square {4}
Vertex figure Runcinated triangular tiling honeycomb verf.png
hexagonal antiprism
Coxeter group [math]\displaystyle{ 2\times\overline{Y}_3 }[/math], 3,6,3
Properties Vertex-transitive, edge-transitive

The runcinated triangular tiling honeycomb, CDel node 1.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png, has triangular tiling and triangular prism cells, with a hexagonal antiprism vertex figure.

H3 363-1001.png

Runcitruncated triangular tiling honeycomb

Runcitruncated triangular tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbols t0,1,3{3,6,3}
s2,3{3,6,3}
Coxeter diagrams CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells t{3,6} Uniform polyhedron-63-t12.png
rr{3,6} 40px
{}×{3} 40px
{}×{6} Hexagonal prism.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Runcitruncated triangular tiling honeycomb verf.png
isosceles-trapezoidal pyramid
Coxeter group [math]\displaystyle{ \overline{Y}_3 }[/math], [3,6,3]
Properties Vertex-transitive

The runcitruncated triangular tiling honeycomb, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png, has hexagonal tiling, rhombitrihexagonal tiling, triangular prism, and hexagonal prism cells, with an isosceles-trapezoidal pyramid vertex figure.

Symmetry

It can also be constructed as a runcicantic snub triangular tiling honeycomb, CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png, a half-symmetry form with symmetry [3+,6,3].

H3 363-1101.png

Omnitruncated triangular tiling honeycomb

Omnitruncated triangular tiling honeycomb
Type Paracompact uniform honeycomb
Schläfli symbol t0,1,2,3{3,6,3}
Coxeter diagram CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Cells tr{3,6} Uniform polyhedron-63-t012.png
{}×{6} Hexagonal prism.png
Faces square {4}
hexagon {6}
dodecagon {12}
Vertex figure Omnitruncated triangular tiling honeycomb verf.png
phyllic disphenoid
Coxeter group [math]\displaystyle{ 2\times\overline{Y}_3 }[/math], 3,6,3
Properties Vertex-transitive, edge-transitive

The omnitruncated triangular tiling honeycomb, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node 1.png, has truncated trihexagonal tiling and hexagonal prism cells, with a phyllic disphenoid vertex figure.

H3 363-1111.png

Runcisnub triangular tiling honeycomb

Runcisnub triangular tiling honeycomb
Type Paracompact scaliform honeycomb
Schläfli symbol s3{3,6,3}
Coxeter diagram CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Cells r{6,3} Uniform tiling 333-t02.png
{}x{3} 40px
{3,6} 40px
tricup Triangular cupola.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure
Coxeter group [math]\displaystyle{ \overline{Y}_3 }[/math], [3+,6,3]
Properties Vertex-transitive, non-uniform

The runcisnub triangular tiling honeycomb, CDel node h.pngCDel 3.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png, has trihexagonal tiling, triangular tiling, triangular prism, and triangular cupola cells. It is vertex-transitive, but not uniform, since it contains Johnson solid triangular cupola cells.

See also

  • Convex uniform honeycombs in hyperbolic space
  • Regular tessellations of hyperbolic 3-space
  • Paracompact uniform honeycombs

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • The Beauty of Geometry: Twelve Essays (1999), Dover Publications, LCCN 99-35678, ISBN 0-486-40919-8 (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
  • Jeffrey R. Weeks The Shape of Space, 2nd edition ISBN 0-8247-0709-5 (Chapter 16-17: Geometries on Three-manifolds I, II)
  • Norman Johnson Uniform Polytopes, Manuscript
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
    • N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups