Regular complex polygon

From HandWiki
Revision as of 19:59, 6 February 2024 by Corlink (talk | contribs) (correction)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Polygons which have an accompanying imaginary dimension for each real dimension
Three views of regular complex polygon 4{4}2, CDel 4node 1.pngCDel 3.pngCDel 4.pngCDel 3.pngCDel node.png
ComplexOctagon.svg
This complex polygon has 8 edges (complex lines), labeled as a..h, and 16 vertices. Four vertices lie in each edge and two edges intersect at each vertex. In the left image, the outlined squares are not elements of the polytope but are included merely to help identify vertices lying in the same complex line. The octagonal perimeter of the left image is not an element of the polytope, but it is a petrie polygon.[1] In the middle image, each edge is represented as a real line and the four vertices in each line can be more clearly seen.
Complex polygon 4-4-2-perspective-labeled.png
A perspective sketch representing the 16 vertex points as large black dots and the 8 4-edges as bounded squares within each edge. The green path represents the octagonal perimeter of the left hand image.
Complex 1-polytopes represented in the Argand plane as regular polygons for p = 2, 3, 4, 5, and 6, with black vertices. The centroid of the p vertices is shown seen in red. The sides of the polygons represent one application of the symmetry generator, mapping each vertex to the next counterclockwise copy. These polygonal sides are not edge elements of the polytope, as a complex 1-polytope can have no edges (it often is a complex edge) and only contains vertex elements.

In geometry, a regular complex polygon is a generalization of a regular polygon in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one. A regular polygon exists in 2 real dimensions, [math]\displaystyle{ \mathbb{R}^2 }[/math], while a complex polygon exists in two complex dimensions, [math]\displaystyle{ \mathbb{C}^2 }[/math], which can be given real representations in 4 dimensions, [math]\displaystyle{ \mathbb{R}^4 }[/math], which then must be projected down to 2 or 3 real dimensions to be visualized. A complex polygon is generalized as a complex polytope in [math]\displaystyle{ \mathbb{C}^n }[/math].

A complex polygon may be understood as a collection of complex points, lines, planes, and so on, where every point is the junction of multiple lines, every line of multiple planes, and so on.

The regular complex polygons have been completely characterized, and can be described using a symbolic notation developed by Coxeter.

A regular complex polygon with all 2-edges can be represented by a graph, while forms with k-edges can only be related by hypergraphs. A k-edge can be seen as a set of vertices, with no order implied. They may be drawn with pairwise 2-edges, but this is not structurally accurate.

Regular complex polygons

While 1-polytopes can have unlimited p, finite regular complex polygons, excluding the double prism polygons p{4}2, are limited to 5-edge (pentagonal edges) elements, and infinite regular apeirogons also include 6-edge (hexagonal edges) elements.

Notations

Shephard's modified Schläfli notation

Shephard originally devised a modified form of Schläfli's notation for regular polytopes. For a polygon bounded by p1-edges, with a p2-set as vertex figure and overall symmetry group of order g, we denote the polygon as p1(g)p2.

The number of vertices V is then g/p2 and the number of edges E is g/p1.

The complex polygon illustrated above has eight square edges (p1=4) and sixteen vertices (p2=2). From this we can work out that g = 32, giving the modified Schläfli symbol 4(32)2.

Coxeter's revised modified Schläfli notation

A more modern notation p1{q}p2 is due to Coxeter,[2] and is based on group theory. As a symmetry group, its symbol is p1[q]p2.

The symmetry group p1[q]p2 is represented by 2 generators R1, R2, where: R1p1 = R2p2 = I. If q is even, (R2R1)q/2 = (R1R2)q/2. If q is odd, (R2R1)(q−1)/2R2 = (R1R2)(q−1)/2R1. When q is odd, p1=p2.

For 4[4]2 has R14 = R22 = I, (R2R1)2 = (R1R2)2.

For 3[5]3 has R13 = R23 = I, (R2R1)2R2 = (R1R2)2R1.

Coxeter–Dynkin diagrams

Coxeter also generalised the use of Coxeter–Dynkin diagrams to complex polytopes, for example the complex polygon p{q}r is represented by CDel pnode 1.pngCDel q.pngCDel rnode.png and the equivalent symmetry group, p[q]r, is a ringless diagram CDel pnode.pngCDel q.pngCDel rnode.png. The nodes p and r represent mirrors producing p and r images in the plane. Unlabeled nodes in a diagram have implicit 2 labels. For example, a real regular polygon is 2{q}2 or {q} or CDel node 1.pngCDel q.pngCDel node.png.

One limitation, nodes connected by odd branch orders must have identical node orders. If they do not, the group will create "starry" polygons, with overlapping element. So CDel 3node 1.pngCDel 4.pngCDel node.png and CDel 3node 1.pngCDel 3.pngCDel 3node.png are ordinary, while CDel 4node 1.pngCDel 3.pngCDel node.png is starry.

12 Irreducible Shephard groups

Rank2 shephard subgroups.png
12 irreducible Shephard groups with their subgroup index relations.[3]
Rank 2 shephard subgroups2.png
Subgroups from <5,3,2>30, <4,3,2>12 and <3,3,2>6
Subgroups relate by removing one reflection:
p[2q]2 --> p[q]p, index 2 and p[4]q --> p[q]p, index q.
p[4]2 subgroups: p=2,3,4...
p[4]2 --> [p], index p
p[4]2 --> p[]×p[], index 2

Coxeter enumerated this list of regular complex polygons in [math]\displaystyle{ \mathbb{C}^2 }[/math]. A regular complex polygon, p{q}r or CDel pnode 1.pngCDel q.pngCDel rnode.png, has p-edges, and r-gonal vertex figures. p{q}r is a finite polytope if (p + r)q > pr(q − 2).

Its symmetry is written as p[q]r, called a Shephard group, analogous to a Coxeter group, while also allowing unitary reflections.

For nonstarry groups, the order of the group p[q]r can be computed as [math]\displaystyle{ g = 8/q \cdot (1/p+2/q+1/r-1)^{-2} }[/math].[4]

The Coxeter number for p[q]r is [math]\displaystyle{ h = 2/(1/p+2/q+1/r-1) }[/math], so the group order can also be computed as [math]\displaystyle{ g = 2h^2/q }[/math]. A regular complex polygon can be drawn in orthogonal projection with h-gonal symmetry.

The rank 2 solutions that generate complex polygons are:

Group G3 = G(q,1,1) G2 = G(p,1,2) G4 G6 G5 G8 G14 G9 G10 G20 G16 G21 G17 G18
2[q]2, q = 3,4... p[4]2, p = 2,3... 3[3]3 3[6]2 3[4]3 4[3]4 3[8]2 4[6]2 4[4]3 3[5]3 5[3]5 3[10]2 5[6]2 5[4]3
CDel node.pngCDel q.pngCDel node.png CDel pnode.pngCDel 4.pngCDel node.png CDel 3node.pngCDel 3.pngCDel 3node.png CDel 3node.pngCDel 6.pngCDel node.png CDel 3node.pngCDel 4.pngCDel 3node.png CDel 4node.pngCDel 3.pngCDel 4node.png CDel 3node.pngCDel 8.pngCDel node.png CDel 4node.pngCDel 6.pngCDel node.png CDel 4node.pngCDel 4.pngCDel 3node.png CDel 3node.pngCDel 5.pngCDel 3node.png CDel 5node.pngCDel 3.pngCDel 5node.png CDel 3node.pngCDel 10.pngCDel node.png CDel 5node.pngCDel 6.pngCDel node.png CDel 5node.pngCDel 4.pngCDel 3node.png
Order 2q 2p2 24 48 72 96 144 192 288 360 600 720 1200 1800
h q 2p 6 12 24 30 60

Excluded solutions with odd q and unequal p and r are: 6[3]2, 6[3]3, 9[3]3, 12[3]3, ..., 5[5]2, 6[5]2, 8[5]2, 9[5]2, 4[7]2, 9[5]2, 3[9]2, and 3[11]2.

Other whole q with unequal p and r, create starry groups with overlapping fundamental domains: CDel 3node.pngCDel 3.pngCDel node.png, CDel 4node.pngCDel 3.pngCDel node.png, CDel 5node.pngCDel 3.pngCDel node.png, CDel 5node.pngCDel 3.pngCDel 3node.png, CDel 3node.pngCDel 5.pngCDel node.png, and CDel 5node.pngCDel 5.pngCDel node.png.

The dual polygon of p{q}r is r{q}p. A polygon of the form p{q}p is self-dual. Groups of the form p[2q]2 have a half symmetry p[q]p, so a regular polygon CDel pnode 1.pngCDel 3.pngCDel 2x.pngCDel q.pngCDel 3.pngCDel node.png is the same as quasiregular CDel pnode 1.pngCDel 3.pngCDel q.pngCDel 3.pngCDel pnode 1.png. As well, regular polygon with the same node orders, CDel pnode 1.pngCDel 3.pngCDel q.pngCDel 3.pngCDel pnode.png, have an alternated construction CDel node h.pngCDel 3.pngCDel 2x.pngCDel q.pngCDel 3.pngCDel pnode.png, allowing adjacent edges to be two different colors.[5]

The group order, g, is used to compute the total number of vertices and edges. It will have g/r vertices, and g/p edges. When p=r, the number of vertices and edges are equal. This condition is required when q is odd.

Matrix generators

The group p[q]r, CDel pnode.pngCDel q.pngCDel rnode.png, can be represented by two matrices:[6]

CDel pnode.pngCDel q.pngCDel rnode.png
Name R1
CDel pnode.png
R2
CDel rnode.png
Order p r
Matrix

[math]\displaystyle{ \left [\begin{smallmatrix} e^{2\pi i/p} & 0 \\ (e^{2\pi i/p}-1)k & 1 \\ \end{smallmatrix}\right ] }[/math]

[math]\displaystyle{ \left [\begin{smallmatrix} 1 & (e^{2\pi i/r}-1)k \\ 0 & e^{2\pi i/r} \end{smallmatrix}\right ] }[/math]

With

[math]\displaystyle{ k = \sqrt \frac{ \cos(\frac{\pi}{p}-\frac{\pi}{r})+\cos(\frac{2\pi}{q}) }{2\sin\frac{\pi}{p}\sin\frac{\pi}{r} } }[/math]
Examples
CDel pnode.pngCDel 2.pngCDel qnode.png
Name R1
CDel pnode.png
R2
CDel qnode.png
Order p q
Matrix

[math]\displaystyle{ \left [\begin{smallmatrix} e^{2\pi i/p} & 0 \\ 0 & 1 \\ \end{smallmatrix}\right ] }[/math]

[math]\displaystyle{ \left [\begin{smallmatrix} 1 & 0 \\ 0 & e^{2\pi i/q} \\ \end{smallmatrix}\right ] }[/math]

CDel pnode.pngCDel 4.pngCDel node.png
Name R1
CDel pnode.png
R2
CDel node.png
Order p 2
Matrix

[math]\displaystyle{ \left [\begin{smallmatrix} e^{2\pi i/p} & 0 \\ 0 & 1 \\ \end{smallmatrix}\right ] }[/math]

[math]\displaystyle{ \left [\begin{smallmatrix} 0 & 1 \\ 1 & 0 \\ \end{smallmatrix}\right ] }[/math]

CDel 3node.pngCDel 3.pngCDel 3node.png
Name R1
CDel 3node.png
R2
CDel 3node.png
Order 3 3
Matrix

[math]\displaystyle{ \left [\begin{smallmatrix} \frac{-1+\sqrt3 i}{2} & 0 \\ \frac{-3+\sqrt3 i}{2} & 1 \\ \end{smallmatrix}\right ] }[/math]

[math]\displaystyle{ \left [\begin{smallmatrix} 1 & \frac{-3+\sqrt3 i}{2} \\ 0 & \frac{-1+\sqrt3 i}{2} \\ \end{smallmatrix}\right ] }[/math]

CDel 4node.pngCDel 2.pngCDel 4node.png
Name R1
CDel 4node.png
R2
CDel 4node.png
Order 4 4
Matrix

[math]\displaystyle{ \left [\begin{smallmatrix} i & 0 \\ 0 & 1 \\ \end{smallmatrix}\right ] }[/math]

[math]\displaystyle{ \left [\begin{smallmatrix} 1 & 0 \\ 0 & i \\ \end{smallmatrix}\right ] }[/math]

CDel 4node.pngCDel 4.pngCDel node.png
Name R1
CDel 4node.png
R2
CDel node.png
Order 4 2
Matrix

[math]\displaystyle{ \left [\begin{smallmatrix} i & 0 \\ 0 & 1 \\ \end{smallmatrix}\right ] }[/math]

[math]\displaystyle{ \left [\begin{smallmatrix} 0 & 1 \\ 1 & 0 \\ \end{smallmatrix}\right ] }[/math]

CDel 3node.pngCDel 6.pngCDel node.png
Name R1
CDel 3node.png
R2
CDel node.png
Order 3 2
Matrix

[math]\displaystyle{ \left [\begin{smallmatrix} \frac{-1+\sqrt3 i}{2} & 0 \\ \frac{-3+\sqrt3 i}{2} & 1 \\ \end{smallmatrix}\right ] }[/math]

[math]\displaystyle{ \left [\begin{smallmatrix} 1 & -2 \\ 0 & -1 \\ \end{smallmatrix}\right ] }[/math]

Enumeration of regular complex polygons

Coxeter enumerated the complex polygons in Table III of Regular Complex Polytopes.[7]

Group Order Coxeter
number
Polygon Vertices Edges Notes
G(q,q,2)
2[q]2 = [q]
q = 2,3,4,...
2q q 2{q}2 CDel node 1.pngCDel q.pngCDel node.png q q {} Real regular polygons
Same as CDel node h.pngCDel 2x.pngCDel q.pngCDel node.png
Same as CDel node 1.pngCDel q.pngCDel rat.pngCDel 2x.pngCDel node 1.png if q even
Group Order Coxeter
number
Polygon Vertices Edges Notes
G(p,1,2)
p[4]2
p=2,3,4,...
2p2 2p p(2p2)2 p{4}2          
CDel pnode 1.pngCDel 4.pngCDel node.png
p2 2p p{} same as p{}×p{} or CDel pnode 1.pngCDel 2.pngCDel pnode 1.png
[math]\displaystyle{ \mathbb{R}^4 }[/math] representation as p-p duoprism
2(2p2)p 2{4}p CDel node 1.pngCDel 4.pngCDel pnode.png 2p p2 {} [math]\displaystyle{ \mathbb{R}^4 }[/math] representation as p-p duopyramid
G(2,1,2)
2[4]2 = [4]
8 4 2{4}2 = {4} CDel node 1.pngCDel 4.pngCDel node.png 4 4 {} same as {}×{} or CDel node 1.pngCDel 2.pngCDel node 1.png
Real square
G(3,1,2)
3[4]2
18 6 6(18)2 3{4}2 CDel 3node 1.pngCDel 4.pngCDel node.png 9 6 3{} same as 3{}×3{} or CDel 3node 1.pngCDel 2.pngCDel 3node 1.png
[math]\displaystyle{ \mathbb{R}^4 }[/math] representation as 3-3 duoprism
2(18)3 2{4}3 CDel node 1.pngCDel 4.pngCDel 3node.png 6 9 {} [math]\displaystyle{ \mathbb{R}^4 }[/math] representation as 3-3 duopyramid
G(4,1,2)
4[4]2
32 8 8(32)2 4{4}2 CDel 4node 1.pngCDel 4.pngCDel node.png 16 8 4{} same as 4{}×4{} or CDel 4node 1.pngCDel 2.pngCDel 4node 1.png
[math]\displaystyle{ \mathbb{R}^4 }[/math] representation as 4-4 duoprism or {4,3,3}
2(32)4 2{4}4 CDel node 1.pngCDel 4.pngCDel 4node.png 8 16 {} [math]\displaystyle{ \mathbb{R}^4 }[/math] representation as 4-4 duopyramid or {3,3,4}
G(5,1,2)
5[4]2
50 25 5(50)2 5{4}2 CDel 5node 1.pngCDel 4.pngCDel node.png 25 10 5{} same as 5{}×5{} or CDel 5node 1.pngCDel 2.pngCDel 5node 1.png
[math]\displaystyle{ \mathbb{R}^4 }[/math] representation as 5-5 duoprism
2(50)5 2{4}5 CDel node 1.pngCDel 4.pngCDel 5node.png 10 25 {} [math]\displaystyle{ \mathbb{R}^4 }[/math] representation as 5-5 duopyramid
G(6,1,2)
6[4]2
72 36 6(72)2 6{4}2 CDel 6node 1.pngCDel 4.pngCDel node.png 36 12 6{} same as 6{}×6{} or CDel 6node 1.pngCDel 2.pngCDel 6node 1.png
[math]\displaystyle{ \mathbb{R}^4 }[/math] representation as 6-6 duoprism
2(72)6 2{4}6 CDel node 1.pngCDel 4.pngCDel 6node.png 12 36 {} [math]\displaystyle{ \mathbb{R}^4 }[/math] representation as 6-6 duopyramid
G4=G(1,1,2)
3[3]3
<2,3,3>
24 6 3(24)3 3{3}3 CDel 3node 1.pngCDel 3.pngCDel 3node.png 8 8 3{} Möbius–Kantor configuration
self-dual, same as CDel node h.pngCDel 6.pngCDel 3node.png
[math]\displaystyle{ \mathbb{R}^4 }[/math] representation as {3,3,4}
G6
3[6]2
48 12 3(48)2 3{6}2 CDel 3node 1.pngCDel 6.pngCDel node.png 24 16 3{} same as CDel 3node 1.pngCDel 3.pngCDel 3node 1.png
3{3}2 CDel 3node 1.pngCDel 3.pngCDel node.png starry polygon
2(48)3 2{6}3 CDel node 1.pngCDel 6.pngCDel 3node.png 16 24 {}
2{3}3 CDel node 1.pngCDel 3.pngCDel 3node.png starry polygon
G5
3[4]3
72 12 3(72)3 3{4}3 CDel 3node 1.pngCDel 4.pngCDel 3node.png 24 24 3{} self-dual, same as CDel node h.pngCDel 8.pngCDel 3node.png
[math]\displaystyle{ \mathbb{R}^4 }[/math] representation as {3,4,3}
G8
4[3]4
96 12 4(96)4 4{3}4 CDel 4node 1.pngCDel 3.pngCDel 4node.png 24 24 4{} self-dual, same as CDel node h.pngCDel 6.pngCDel 4node.png
[math]\displaystyle{ \mathbb{R}^4 }[/math] representation as {3,4,3}
G14
3[8]2
144 24 3(144)2 3{8}2 CDel 3node 1.pngCDel 8.pngCDel node.png 72 48 3{} same as CDel 3node 1.pngCDel 4.pngCDel 3node 1.png
3{8/3}2 CDel 3node 1.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel node.png starry polygon, same as CDel 3node 1.pngCDel 4.pngCDel rat.pngCDel 3x.pngCDel 3node 1.png
2(144)3 2{8}3 CDel node 1.pngCDel 8.pngCDel 3node.png 48 72 {}
2{8/3}3 CDel node 1.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel 3node.png starry polygon
G9
4[6]2
192 24 4(192)2 4{6}2 CDel 4node 1.pngCDel 6.pngCDel node.png 96 48 4{} same as CDel 4node 1.pngCDel 3.pngCDel 4node 1.png
2(192)4 2{6}4 CDel node 1.pngCDel 6.pngCDel 4node.png 48 96 {}
4{3}2 CDel 4node 1.pngCDel 3.pngCDel node.png 96 48 {} starry polygon
2{3}4 CDel node 1.pngCDel 3.pngCDel 4node.png 48 96 {} starry polygon
G10
4[4]3
288 24 4(288)3 4{4}3 CDel 4node 1.pngCDel 4.pngCDel 3node.png 96 72 4{}
12 4{8/3}3 CDel 4node 1.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel 3node.png starry polygon
24 3(288)4 3{4}4 CDel 3node 1.pngCDel 4.pngCDel 4node.png 72 96 3{}
12 3{8/3}4 CDel 3node 1.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel 4node.png starry polygon
G20
3[5]3
360 30 3(360)3 3{5}3 CDel 3node 1.pngCDel 5.pngCDel 3node.png 120 120 3{} self-dual, same as CDel node h.pngCDel 10.pngCDel 3node.png
[math]\displaystyle{ \mathbb{R}^4 }[/math] representation as {3,3,5}
3{5/2}3 CDel 3node 1.pngCDel 5-2.pngCDel 3node.png self-dual, starry polygon
G16
5[3]5
600 30 5(600)5 5{3}5 CDel 5node 1.pngCDel 3.pngCDel 5node.png 120 120 5{} self-dual, same as CDel node h.pngCDel 6.pngCDel 5node.png
[math]\displaystyle{ \mathbb{R}^4 }[/math] representation as {3,3,5}
10 5{5/2}5 CDel 5node 1.pngCDel 5-2.pngCDel 5node.png self-dual, starry polygon
G21
3[10]2
720 60 3(720)2 3{10}2 CDel 3node 1.pngCDel 10.pngCDel node.png 360 240 3{} same as CDel 3node 1.pngCDel 5.pngCDel 3node 1.png
3{5}2 CDel 3node 1.pngCDel 5.pngCDel node.png starry polygon
3{10/3}2 CDel 3node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel node.png starry polygon, same as CDel 3node 1.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel 3node 1.png
3{5/2}2 CDel 3node 1.pngCDel 5-2.pngCDel node.png starry polygon
2(720)3 2{10}3 CDel node 1.pngCDel 10.pngCDel 3node.png 240 360 {}
2{5}3 CDel node 1.pngCDel 5.pngCDel 3node.png starry polygon
2{10/3}3 CDel node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel 3node.png starry polygon
2{5/2}3 CDel node 1.pngCDel 5-2.pngCDel 3node.png starry polygon
G17
5[6]2
1200 60 5(1200)2 5{6}2 CDel 5node 1.pngCDel 6.pngCDel node.png 600 240 5{} same as CDel 5node 1.pngCDel 3.pngCDel 5node 1.png
20 5{5}2 CDel 5node 1.pngCDel 5.pngCDel node.png starry polygon
20 5{10/3}2 CDel 5node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel node.png starry polygon
60 5{3}2 CDel 5node 1.pngCDel 3.pngCDel node.png starry polygon
60 2(1200)5 2{6}5 CDel node 1.pngCDel 6.pngCDel 5node.png 240 600 {}
20 2{5}5 CDel node 1.pngCDel 5.pngCDel 5node.png starry polygon
20 2{10/3}5 CDel node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel 5node.png starry polygon
60 2{3}5 CDel node 1.pngCDel 3.pngCDel 5node.png starry polygon
G18
5[4]3
1800 60 5(1800)3 5{4}3 CDel 5node 1.pngCDel 4.pngCDel 3node.png 600 360 5{}
15 5{10/3}3 CDel 5node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel 3node.png starry polygon
30 5{3}3 CDel 5node 1.pngCDel 3.pngCDel 3node.png starry polygon
30 5{5/2}3 CDel 5node 1.pngCDel 5-2.pngCDel 3node.png starry polygon
60 3(1800)5 3{4}5 CDel 3node 1.pngCDel 4.pngCDel 5node.png 360 600 3{}
15 3{10/3}5 CDel 3node 1.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel 5node.png starry polygon
30 3{3}5 CDel 3node 1.pngCDel 3.pngCDel 5node.png starry polygon
30 3{5/2}5 CDel 3node 1.pngCDel 5-2.pngCDel 5node.png starry polygon

Visualizations of regular complex polygons

2D graphs

Polygons of the form p{2r}q can be visualized by q color sets of p-edge. Each p-edge is seen as a regular polygon, while there are no faces.

Complex polygons 2{r}q

Polygons of the form 2{4}q are called generalized orthoplexes. They share vertices with the 4D q-q duopyramids, vertices connected by 2-edges.

Complex polygons p{4}2

Polygons of the form p{4}2 are called generalized hypercubes (squares for polygons). They share vertices with the 4D p-p duoprisms, vertices connected by p-edges. Vertices are drawn in green, and p-edges are drawn in alternate colors, red and blue. The perspective is distorted slightly for odd dimensions to move overlapping vertices from the center.


Complex polygons p{r}2
Complex polygons, p{r}p

Polygons of the form p{r}p have equal number of vertices and edges. They are also self-dual.

3D perspective

3D perspective projections of complex polygons p{4}2 can show the point-edge structure of a complex polygon, while scale is not preserved.

The duals 2{4}p: are seen by adding vertices inside the edges, and adding edges in place of vertices.

Quasiregular polygons

A quasiregular polygon is a truncation of a regular polygon. A quasiregular polygon CDel pnode 1.pngCDel q.pngCDel rnode 1.png contains alternate edges of the regular polygons CDel pnode 1.pngCDel q.pngCDel rnode.png and CDel pnode.pngCDel q.pngCDel rnode 1.png. The quasiregular polygon has p vertices on the p-edges of the regular form.

Example quasiregular polygons
p[q]r 2[4]2 3[4]2 4[4]2 5[4]2 6[4]2 7[4]2 8[4]2 3[3]3 3[4]3
Regular
CDel pnode 1.pngCDel q.pngCDel rnode.png
2-generalized-2-cube.svg
CDel node 1.pngCDel 4.pngCDel node.png
4 2-edges
3-generalized-2-cube skew.svg
CDel 3node 1.pngCDel 4.pngCDel node.png
9 3-edges
4-generalized-2-cube.svg
CDel 4node 1.pngCDel 4.pngCDel node.png
16 4-edges
5-generalized-2-cube skew.svg
CDel 5node 1.pngCDel 4.pngCDel node.png
25 5-edges
6-generalized-2-cube.svg
CDel 6node 1.pngCDel 4.pngCDel node.png
36 6-edges
7-generalized-2-cube skew.svg
CDel 7node 1.pngCDel 4.pngCDel node.png
49 7-edges
8-generalized-2-cube.svg
CDel 8node 1.pngCDel 4.pngCDel node.png
64 8-edges
Complex polygon 3-3-3.png
CDel 3node 1.pngCDel 3.pngCDel 3node.png
Complex polygon 3-4-3.png
CDel 3node 1.pngCDel 4.pngCDel 3node.png
Quasiregular
CDel pnode 1.pngCDel q.pngCDel rnode 1.png
Truncated 2-generalized-square.svg
CDel node 1.pngCDel 4.pngCDel node 1.png = CDel node 1.pngCDel 8.pngCDel node.png
4+4 2-edges
Truncated 3-generalized-square skew.svg
CDel 3node 1.pngCDel 4.pngCDel node 1.png
6 2-edges
9 3-edges
Truncated 4-generalized-square.svg
CDel 4node 1.pngCDel 4.pngCDel node 1.png
8 2-edges
16 4-edges
Truncated 5-generalized-square skew.svg
CDel 5node 1.pngCDel 4.pngCDel node 1.png
10 2-edges
25 5-edges
Truncated 6-generalized-square.svg
CDel 6node 1.pngCDel 4.pngCDel node 1.png
12 2-edges
36 6-edges
Truncated 7-generalized-square skew.svg
CDel 7node 1.pngCDel 4.pngCDel node 1.png
14 2-edges
49 7-edges
Truncated 8-generalized-square.svg
CDel 8node 1.pngCDel 4.pngCDel node 1.png
16 2-edges
64 8-edges
Complex polygon 3-6-2.png
CDel 3node 1.pngCDel 3.pngCDel 3node 1.png = CDel 3node 1.pngCDel 6.pngCDel node.png
Complex polygon 3-8-2.png
CDel 3node 1.pngCDel 4.pngCDel 3node 1.png = CDel 3node 1.pngCDel 8.pngCDel node.png
Regular
CDel pnode 1.pngCDel q.pngCDel rnode.png
2-generalized-2-orthoplex.svg
CDel node 1.pngCDel 4.pngCDel node.png
4 2-edges
3-generalized-2-orthoplex skew.svg
CDel node 1.pngCDel 4.pngCDel 3node.png
6 2-edges
3-generalized-2-orthoplex.svg
CDel node 1.pngCDel 4.pngCDel 4node.png
8 2-edges
5-generalized-2-orthoplex skew.svg
CDel node 1.pngCDel 4.pngCDel 5node.png
10 2-edges
6-generalized-2-orthoplex.svg
CDel node 1.pngCDel 4.pngCDel 6node.png
12 2-edges
7-generalized-2-orthoplex skew.svg
CDel node 1.pngCDel 4.pngCDel 7node.png
14 2-edges
8-generalized-2-orthoplex.svg
CDel node 1.pngCDel 4.pngCDel 8node.png
16 2-edges
Complex polygon 3-3-3.png
CDel 3node 1.pngCDel 3.pngCDel 3node.png
Complex polygon 3-4-3.png
CDel 3node 1.pngCDel 4.pngCDel 3node.png

Notes

  1. Coxeter, Regular Complex Polytopes, 11.3 Petrie Polygon, a simple h-gon formed by the orbit of the flag (O0,O0O1) for the product of the two generating reflections of any nonstarry regular complex polygon, p1{q}p2.
  2. Coxeter, Regular Complex Polytopes, p. xiv
  3. Coxeter, Complex Regular Polytopes, p. 177, Table III
  4. Lehrer & Taylor 2009, p. 87
  5. Coxeter, Regular Complex Polytopes, Table IV. The regular polygons. pp. 178–179
  6. Complex Polytopes, 8.9 The Two-Dimensional Case, p. 88
  7. Regular Complex Polytopes, Coxeter, pp. 177–179
  8. Coxeter, Regular Complex Polytopes, p. 108
  9. Coxeter, Regular Complex Polytopes, p. 108
  10. Coxeter, Regular Complex Polytopes, p. 109
  11. Coxeter, Regular Complex Polytopes, p. 111
  12. Coxeter, Regular Complex Polytopes, p. 30 diagram and p. 47 indices for 8 3-edges
  13. Coxeter, Regular Complex Polytopes, p. 110
  14. Coxeter, Regular Complex Polytopes, p. 110
  15. Coxeter, Regular Complex Polytopes, p. 48
  16. Coxeter, Regular Complex Polytopes, p. 49

References

  • Coxeter, H.S.M. and Moser, W. O. J.; Generators and Relations for Discrete Groups (1965), esp pp 67–80.
  • Coxeter, H.S.M. (1991), Regular Complex Polytopes, Cambridge University Press, ISBN 0-521-39490-2 
  • Coxeter, H.S.M. and Shephard, G.C.; Portraits of a family of complex polytopes, Leonardo Vol 25, No 3/4, (1992), pp 239–244,
  • Shephard, G.C.; Regular complex polytopes, Proc. London math. Soc. Series 3, Vol 2, (1952), pp 82–97.
  • G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Canadian Journal of Mathematics. 6(1954), 274–304 [1][yes|permanent dead link|dead link}}]
  • Gustav I. Lehrer and Donald E. Taylor, Unitary Reflection Groups, Cambridge University Press 2009