183 (number)

From HandWiki
Revision as of 21:08, 6 February 2024 by Steve Marsio (talk | contribs) (linkage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Natural number
← 182 183 184 →
Cardinalone hundred eighty-three
Ordinal183rd
(one hundred eighty-third)
Factorization3 × 61
Divisors1, 3, 61, 183
Greek numeralΡΠΓ´
Roman numeralCLXXXIII
Binary101101112
Ternary202103
Quaternary23134
Quinary12135
Senary5036
Octal2678
Duodecimal13312
HexadecimalB716
Vigesimal9320
Base 365336

183 (one hundred [and] eighty-three) is the natural number following 182 and preceding 184.

In mathematics

183 is a perfect totient number, a number that is equal to the sum of its iterated totients.[1]

Because [math]\displaystyle{ 183 = 13^2 + 13 + 1 }[/math], it is the number of points in a projective plane over the finite field [math]\displaystyle{ \mathbb{Z}_{13} }[/math].[2] 183 is the fourth element of a divisibility sequence [math]\displaystyle{ 1,3,13,183,\dots }[/math] in which the [math]\displaystyle{ n }[/math]th number [math]\displaystyle{ a_n }[/math] can be computed as [math]\displaystyle{ a_n=a_{n-1}^2+a_{n-1}+1=\bigl\lfloor x^{2^n}\bigr\rfloor, }[/math] for a transcendental number [math]\displaystyle{ x\approx 1.38509 }[/math].[3][4] This sequence counts the number of trees of height [math]\displaystyle{ \le n }[/math] in which each node can have at most two children.[3][5]

There are 183 different semiorders on four labeled elements.[6]

See also

References

  1. Sloane, N. J. A., ed. "Sequence A082897 (Perfect totient numbers)". OEIS Foundation. https://oeis.org/A082897. 
  2. Sloane, N. J. A., ed. "Sequence A002061 (Central polygonal numbers)". OEIS Foundation. https://oeis.org/A002061. 
  3. 3.0 3.1 Sloane, N. J. A., ed. "Sequence A002065". OEIS Foundation. https://oeis.org/A002065. 
  4. Dubickas, Artūras (2022). "Transcendency of some constants related to integer sequences of polynomial iterations". Ramanujan Journal 57 (2): 569–581. doi:10.1007/s11139-021-00428-5. 
  5. Kalman, Stan C.; Kwasny, Barry L. (January 1995). "Tail-recursive distributed representations and simple recurrent networks". Connection Science 7 (1): 61–80. doi:10.1080/09540099508915657. https://openscholarship.wustl.edu/cse_research/547. 
  6. Sloane, N. J. A., ed. "Sequence A006531 (Semiorders on n elements)". OEIS Foundation. https://oeis.org/A006531.