300 (number)

From HandWiki
Short description: Natural number
← 299 300 301 →
Cardinalthree hundred
Ordinal300th
(three hundredth)
Factorization22 × 3 × 52
Greek numeralΤ´
Roman numeralCCC
Binary1001011002
Ternary1020103
Quaternary102304
Quinary22005
Senary12206
Octal4548
Duodecimal21012
Hexadecimal12C16
VigesimalF020
Base 368C36
Hebrewש (Shin)

300 (three hundred) is the natural number following 299 and preceding 301.

Mathematical properties

The number 300 is a triangular number and the sum of a pair of twin primes (149 + 151), as well as the sum of ten consecutive primes (13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47). It is palindromic in 3 consecutive bases: 30010 = 6067 = 4548 = 3639, and also in base 13. Factorization is 22 × 3 × 52. 30064 + 1 is prime

Integers from 301 to 399

300s

301

Main page: 301 (number)

302

Main page: 302 (number)

303

Main page: 303 (number)

304

Main page: 304 (number)

305

Main page: 305 (number)

306

Main page: 306 (number)

307

Main page: 307 (number)

308

308 = 22 × 7 × 11. 308 is a nontotient,[1] totient sum of the first 31 integers, heptagonal pyramidal number,[2] and the sum of two consecutive primes (151 + 157).

309

309 = 3 × 103, Blum integer, number of primes <= 211.[3]

310s

310

Main page: 310 (number)

311

Main page: 311 (number)

312

Main page: 312 (number)

312 = 23 × 3 × 13, idoneal number.

313

Main page: 313 (number)

314

314 = 2 × 157. 314 is a nontotient,[1] smallest composite number in Somos-4 sequence.[4]

315

315 = 32 × 5 × 7 = [math]\displaystyle{ D_{7,3} \! }[/math] rencontres number, highly composite odd number, having 12 divisors.[5]

316

316 = 22 × 79, a centered triangular number[6] and a centered heptagonal number.[7]

317

317 is a prime number, Eisenstein prime with no imaginary part, Chen prime,[8] and a strictly non-palindromic number.

317 is the exponent (and number of ones) in the fourth base-10 repunit prime.[9]

318

Main page: 318 (number)

319

319 = 11 × 29. 319 is the sum of three consecutive primes (103 + 107 + 109), Smith number,[10] cannot be represented as the sum of fewer than 19 fourth powers, happy number in base 10[11]

320s

320

320 = 26 × 5 = (25) × (2 × 5). 320 is a Leyland number,[12] and maximum determinant of a 10 by 10 matrix of zeros and ones.

321

321 = 3 × 107, a Delannoy number[13]

322

322 = 2 × 7 × 23. 322 is a sphenic,[14] nontotient, untouchable,[citation needed] and a Lucas number.[15]

323

323 = 17 × 19. 323 is the sum of nine consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), the sum of the 13 consecutive primes (5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), Motzkin number.[16] A Lucas and Fibonacci pseudoprime. See 323 (disambiguation)

324

324 = 22 × 34 = 182. 324 is the sum of four consecutive primes (73 + 79 + 83 + 89), totient sum of the first 32 integers, a square number,[17] and an untouchable number.[citation needed]

325

325 = 52 × 13. 325 is a triangular number, hexagonal number,[18] nonagonal number,[19] centered nonagonal number.[20] 325 is the smallest number to be the sum of two squares in 3 different ways: 12 + 182, 62 + 172 and 102 + 152. 325 is also the smallest (and only known) 3-hyperperfect number.

326

326 = 2 × 163. 326 is a nontotient, noncototient,[21] and an untouchable number.[citation needed] 326 is the sum of the 14 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47), lazy caterer number (sequence A000124 in the OEIS).

327

327 = 3 × 109. 327 is a perfect totient number,[22] number of compositions of 10 whose run-lengths are either weakly increasing or weakly decreasing[23]

328

328 = 23 × 41. 328 is a refactorable number,[24] and it is the sum of the first fifteen primes (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47).

329

329 = 7 × 47. 329 is the sum of three consecutive primes (107 + 109 + 113), and a highly cototient number.[25]

330s

330

330 = 2 × 3 × 5 × 11. 330 is sum of six consecutive primes (43 + 47 + 53 + 59 + 61 + 67), pentatope number (and hence a binomial coefficient [math]\displaystyle{ \tbinom {11}4 }[/math]), a pentagonal number,[26] divisible by the number of primes below it, and a sparsely totient number.[27]

331

331 is a prime number, super-prime, cuban prime,[28] sum of five consecutive primes (59 + 61 + 67 + 71 + 73), centered pentagonal number,[29] centered hexagonal number,[30] and Mertens function returns 0.[31]

332

332 = 22 × 83, Mertens function returns 0.[31]

333

333 = 32 × 37, Mertens function returns 0,[31]

334

334 = 2 × 167, nontotient.[32]

335

335 = 5 × 67, divisible by the number of primes below it, number of Lyndon words of length 12.

336

336 = 24 × 3 × 7, untouchable number,[citation needed] number of partitions of 41 into prime parts.[33]

337

337, prime number, emirp, permutable prime with 373 and 733, Chen prime,[8] star number

338

338 = 2 × 132, nontotient, number of square (0,1)-matrices without zero rows and with exactly 4 entries equal to 1.[34]

339

339 = 3 × 113, Ulam number[35]

340s

340

340 = 22 × 5 × 17, sum of eight consecutive primes (29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), sum of ten consecutive primes (17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), sum of the first four powers of 4 (41 + 42 + 43 + 44), divisible by the number of primes below it, nontotient, noncototient.[21] Number of regions formed by drawing the line segments connecting any two of the 12 perimeter points of a 3 times 3 grid of squares (sequence A331452 in the OEIS) and (sequence A255011 in the OEIS).

341

341 = 11 × 31, sum of seven consecutive primes (37 + 41 + 43 + 47 + 53 + 59 + 61), octagonal number,[36] centered cube number,[37] super-Poulet number. 341 is the smallest Fermat pseudoprime; it is the least composite odd modulus m greater than the base b, that satisfies the Fermat property "bm−1 − 1 is divisible by m", for bases up to 128 of b = 2, 15, 60, 63, 78, and 108.

342

342 = 2 × 32 × 19, pronic number,[38] Untouchable number.[citation needed]

343

343 = 73, the first nice Friedman number that is composite since 343 = (3 + 4)3. It is the only known example of x2+x+1 = y3, in this case, x=18, y=7. It is z3 in a triplet (x,y,z) such that x5 + y2 = z3.

344

344 = 23 × 43, octahedral number,[39] noncototient,[21] totient sum of the first 33 integers, refactorable number.[24]

345

345 = 3 × 5 × 23, sphenic number,[14] idoneal number

346

346 = 2 × 173, Smith number,[10] noncototient.[21]

347

347 is a prime number, emirp, safe prime,[40] Eisenstein prime with no imaginary part, Chen prime,[8] Friedman prime since 347 = 73 + 4, and a strictly non-palindromic number.

348

348 = 22 × 3 × 29, sum of four consecutive primes (79 + 83 + 89 + 97), refactorable number.[24]

349

349, prime number, sum of three consecutive primes (109 + 113 + 127), 5349 - 4349 is a prime number.[41]

350s

350

350 = 2 × 52 × 7 = [math]\displaystyle{ \left\{ {7 \atop 4} \right\} }[/math], primitive semiperfect number,[42] divisible by the number of primes below it, nontotient, a truncated icosahedron of frequency 6 has 350 hexagonal faces and 12 pentagonal faces.

351

351 = 33 × 13, triangular number, sum of five consecutive primes (61 + 67 + 71 + 73 + 79), member of Padovan sequence[43] and number of compositions of 15 into distinct parts.[44]

352

352 = 25 × 11, the number of n-Queens Problem solutions for n = 9. It is the sum of two consecutive primes (173 + 179), lazy caterer number (sequence A000124 in the OEIS).

353

Main page: 353 (number)

354

354 = 2 × 3 × 59 = 14 + 24 + 34 + 44,[45][46] sphenic number,[14] nontotient, also SMTP code meaning start of mail input. It is also sum of absolute value of the coefficients of Conway's polynomial.

355

355 = 5 × 71, Smith number,[10] Mertens function returns 0,[31] divisible by the number of primes below it.

The numerator of the best simplified rational approximation of pi having a denominator of four digits or fewer. This fraction (355/113) is known as Milü and provides an extremely accurate approximation for pi.

356

356 = 22 × 89, Mertens function returns 0.[31]

357

357 = 3 × 7 × 17, sphenic number.[14]

358

358 = 2 × 179, sum of six consecutive primes (47 + 53 + 59 + 61 + 67 + 71), Mertens function returns 0,[31] number of ways to partition {1,2,3,4,5} and then partition each cell (block) into subcells.[47]

359

Main page: 359 (number)

360s

360

Main page: 360 (number)

361

361 = 192, centered triangular number,[6] centered octagonal number, centered decagonal number,[48] member of the Mian–Chowla sequence;[49] also the number of positions on a standard 19 x 19 Go board.

362

362 = 2 × 181 = σ2(19): sum of squares of divisors of 19,[50] Mertens function returns 0,[31] nontotient, noncototient.[21]

363

Main page: 363 (number)

364

364 = 22 × 7 × 13, tetrahedral number,[51] sum of twelve consecutive primes (11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53), Mertens function returns 0,[31] nontotient. It is a repdigit in base 3 (111111), base 9 (444), base 25 (EE), base 27 (DD), base 51 (77) and base 90 (44), the sum of six consecutive powers of 3 (1 + 3 + 9 + 27 + 81 + 243), and because it is the twelfth non-zero tetrahedral number.[52]

365

Main page: 365 (number)

366

366 = 2 × 3 × 61, sphenic number,[14] Mertens function returns 0,[31] noncototient,[21] number of complete partitions of 20,[53] 26-gonal and 123-gonal. Also the number of days in a leap year.

367

367 is a prime number, Perrin number,[54] happy number, prime index prime and a strictly non-palindromic number.

368

368 = 24 × 23. It is also a Leyland number.[12]

369

Main page: 369 (number)

370s

370

370 = 2 × 5 × 37, sphenic number,[14] sum of four consecutive primes (83 + 89 + 97 + 101), nontotient, with 369 part of a Ruth–Aaron pair with only distinct prime factors counted, Base 10 Armstrong number since 33 + 73 + 03 = 370.

371

371 = 7 × 53, sum of three consecutive primes (113 + 127 + 131), sum of seven consecutive primes (41 + 43 + 47 + 53 + 59 + 61 + 67), sum of the primes from its least to its greatest prime factor (sequence A055233 in the OEIS), the next such composite number is 2935561623745, Armstrong number since 33 + 73 + 13 = 371.

372

372 = 22 × 3 × 31, sum of eight consecutive primes (31 + 37 + 41 + 43 + 47 + 53 + 59 + 61), noncototient,[21] untouchable number,[citation needed] refactorable number.[24]

373

373, prime number, balanced prime,[55] two-sided prime, sum of five consecutive primes (67 + 71 + 73 + 79 + 83), permutable prime with 337 and 733, palindromic prime in 3 consecutive bases: 5658 = 4549 = 37310 and also in base 4: 113114.

374

374 = 2 × 11 × 17, sphenic number,[14] nontotient, 3744 + 1 is prime.[56]

375

375 = 3 × 53, number of regions in regular 11-gon with all diagonals drawn.[57]

376

376 = 23 × 47, pentagonal number,[26] 1-automorphic number,[58] nontotient, refactorable number.[24] There is a math puzzle in which when 376 is squared, 376 is also the last three digits, as 376 * 376 = 141376 [59]

377

377 = 13 × 29, Fibonacci number, a centered octahedral number,[60] a Lucas and Fibonacci pseudoprime, the sum of the squares of the first six primes.

378

378 = 2 × 33 × 7, triangular number, cake number, hexagonal number,[18] Smith number.[10]

379

379 is a prime number, Chen prime,[8] lazy caterer number (sequence A000124 in the OEIS) and a happy number in base 10. It is the sum of the 15 consecutive primes (3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53). 379! - 1 is prime.

380s

380

380 = 22 × 5 × 19, pronic number.[38]

381

381 = 3 × 127, palindromic in base 2 and base 8.

It is the sum of the first 16 prime numbers (2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53).

382

382 = 2 × 191, sum of ten consecutive primes (19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59), Smith number.[10]

383

383, prime number, safe prime,[40] Woodall prime,[61] Thabit number, Eisenstein prime with no imaginary part, palindromic prime. It is also the first number where the sum of a prime and the reversal of the prime is also a prime.[62] 4383 - 3383 is prime.

384

Main page: 384 (number)

385

385 = 5 × 7 × 11, sphenic number,[14] square pyramidal number,[63] the number of integer partitions of 18.

385 = 102 + 92 + 82 + 72 + 62 + 52 + 42 + 32 + 22 + 12

386

386 = 2 × 193, nontotient, noncototient,[21] centered heptagonal number,[7] number of surface points on a cube with edge-length 9.[64]

387

387 = 32 × 43, number of graphical partitions of 22.[65]

388

388 = 22 × 97 = solution to postage stamp problem with 6 stamps and 6 denominations,[66] number of uniform rooted trees with 10 nodes.[67]

389

389, prime number, emirp, Eisenstein prime with no imaginary part, Chen prime,[8] highly cototient number,[25] strictly non-palindromic number. Smallest conductor of a rank 2 Elliptic curve.

390s

390

390 = 2 × 3 × 5 × 13, sum of four consecutive primes (89 + 97 + 101 + 103), nontotient,

[math]\displaystyle{ \sum_{n=0}^{10}{390}^{n} }[/math] is prime[68]

391

391 = 17 × 23, Smith number,[10] centered pentagonal number.[29]

392

392 = 23 × 72, Achilles number.

393

393 = 3 × 131, Blum integer, Mertens function returns 0.[31]

394

394 = 2 × 197 = S5 a Schröder number,[69] nontotient, noncototient.[21]

395

395 = 5 × 79, sum of three consecutive primes (127 + 131 + 137), sum of five consecutive primes (71 + 73 + 79 + 83 + 89), number of (unordered, unlabeled) rooted trimmed trees with 11 nodes.[70]

396

396 = 22 × 32 × 11, sum of twin primes (197 + 199), totient sum of the first 36 integers, refactorable number,[24] Harshad number, digit-reassembly number.

397

397, prime number, cuban prime,[28] centered hexagonal number.[30]

398

398 = 2 × 199, nontotient.

[math]\displaystyle{ \sum_{n=0}^{10}{398}^{n} }[/math] is prime[68]

399

399 = 3 × 7 × 19, sphenic number,[14] smallest Lucas–Carmichael number, Leyland number of the second kind. 399! + 1 is prime.

References

  1. 1.0 1.1 Sloane, N. J. A., ed. "Sequence A005277". OEIS Foundation. https://oeis.org/A005277. 
  2. Sloane, N. J. A., ed. "Sequence A002413 (Heptagonal pyramidal numbers)". OEIS Foundation. https://oeis.org/A002413. Retrieved 2016-05-22. 
  3. Sloane, N. J. A., ed. "Sequence A007053 (Number of primes <= 2^n)". OEIS Foundation. https://oeis.org/A007053. Retrieved 2022-06-02. 
  4. Sloane, N. J. A., ed. "Sequence A006720 (Somos-4 sequence)". OEIS Foundation. https://oeis.org/A006720. 
  5. "A053624 - OEIS". https://oeis.org/A053624. 
  6. 6.0 6.1 Sloane, N. J. A., ed. "Sequence A005448 (Centered triangular numbers)". OEIS Foundation. https://oeis.org/A005448. Retrieved 2016-05-21. 
  7. 7.0 7.1 Sloane, N. J. A., ed. "Sequence A069099 (Centered heptagonal numbers)". OEIS Foundation. https://oeis.org/A069099. Retrieved 2016-05-21. 
  8. 8.0 8.1 8.2 8.3 8.4 Sloane, N. J. A., ed. "Sequence A109611 (Chen primes)". OEIS Foundation. https://oeis.org/A109611. Retrieved 2016-05-21. 
  9. Guy, Richard; Unsolved Problems in Number Theory, p. 7 ISBN:1475717385
  10. 10.0 10.1 10.2 10.3 10.4 10.5 Sloane, N. J. A., ed. "Sequence A006753 (Smith numbers)". OEIS Foundation. https://oeis.org/A006753. Retrieved 2016-05-21. 
  11. Sloane, N. J. A., ed. "Sequence A007770 (Happy numbers: numbers whose trajectory under iteration of sum of squares of digits map (see A003132) includes 1)". OEIS Foundation. https://oeis.org/A007770. 
  12. 12.0 12.1 Sloane, N. J. A., ed. "Sequence A076980 (Leyland numbers)". OEIS Foundation. https://oeis.org/A076980. Retrieved 2016-05-22. 
  13. Sloane, N. J. A., ed. "Sequence A001850 (Central Delannoy numbers)". OEIS Foundation. https://oeis.org/A001850. Retrieved 2016-05-21. 
  14. 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 Sloane, N. J. A., ed. "Sequence A007304 (Sphenic numbers)". OEIS Foundation. https://oeis.org/A007304. Retrieved 2016-05-21. 
  15. Sloane, N. J. A., ed. "Sequence A000032 (Lucas numbers)". OEIS Foundation. https://oeis.org/A000032. Retrieved 2016-05-21. 
  16. Sloane, N. J. A., ed. "Sequence A001006 (Motzkin numbers)". OEIS Foundation. https://oeis.org/A001006. Retrieved 2016-05-22. 
  17. "A000290 - OEIS". https://oeis.org/A000290. 
  18. 18.0 18.1 Sloane, N. J. A., ed. "Sequence A000384 (Hexagonal numbers)". OEIS Foundation. https://oeis.org/A000384. Retrieved 2016-05-22. 
  19. Sloane, N. J. A., ed. "Sequence A001106 (9-gonal numbers)". OEIS Foundation. https://oeis.org/A001106. Retrieved 2016-05-22. 
  20. Sloane, N. J. A., ed. "Sequence A060544 (Centered 9-gonal numbers)". OEIS Foundation. https://oeis.org/A060544. Retrieved 2016-05-22. 
  21. 21.0 21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 Sloane, N. J. A., ed. "Sequence A005278 (Noncototients)". OEIS Foundation. https://oeis.org/A005278. Retrieved 2016-05-21. 
  22. Sloane, N. J. A., ed. "Sequence A082897 (Perfect totient numbers)". OEIS Foundation. https://oeis.org/A082897. Retrieved 2016-05-22. 
  23. Sloane, N. J. A., ed. "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". OEIS Foundation. https://oeis.org/A332835. Retrieved 2022-06-02. 
  24. 24.0 24.1 24.2 24.3 24.4 24.5 Sloane, N. J. A., ed. "Sequence A033950 (Refactorable numbers)". OEIS Foundation. https://oeis.org/A033950. Retrieved 2016-05-22. 
  25. 25.0 25.1 Sloane, N. J. A., ed. "Sequence A100827 (Highly cototient numbers)". OEIS Foundation. https://oeis.org/A100827. Retrieved 2016-05-22. 
  26. 26.0 26.1 Sloane, N. J. A., ed. "Sequence A000326 (Pentagonal numbers)". OEIS Foundation. https://oeis.org/A000326. Retrieved 2016-05-22. 
  27. Sloane, N. J. A., ed. "Sequence A036913 (Sparsely totient numbers)". OEIS Foundation. https://oeis.org/A036913. Retrieved 2016-05-22. 
  28. 28.0 28.1 Sloane, N. J. A., ed. "Sequence A002407 (Cuban primes)". OEIS Foundation. https://oeis.org/A002407. Retrieved 2016-05-22. 
  29. 29.0 29.1 Sloane, N. J. A., ed. "Sequence A005891 (Centered pentagonal numbers)". OEIS Foundation. https://oeis.org/A005891. Retrieved 2016-05-22. 
  30. 30.0 30.1 Sloane, N. J. A., ed. "Sequence A003215 (Hex numbers)". OEIS Foundation. https://oeis.org/A003215. Retrieved 2016-05-22. 
  31. 31.0 31.1 31.2 31.3 31.4 31.5 31.6 31.7 31.8 31.9 Sloane, N. J. A., ed. "Sequence A028442 (Numbers n such that Mertens' function is zero)". OEIS Foundation. https://oeis.org/A028442. Retrieved 2016-05-22. 
  32. Sloane, N. J. A., ed. "Sequence A003052 (Self numbers)". OEIS Foundation. https://oeis.org/A003052. Retrieved 2016-05-21. 
  33. Sloane, N. J. A., ed. "Sequence A000607 (Number of partitions of n into prime parts)". OEIS Foundation. https://oeis.org/A000607. 
  34. Sloane, N. J. A., ed. "Sequence A122400 (Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1)". OEIS Foundation. https://oeis.org/A122400. 
  35. Sloane, N. J. A., ed. "Sequence A002858 (Ulam numbers)". OEIS Foundation. https://oeis.org/A002858. 
  36. Sloane, N. J. A., ed. "Sequence A000567 (Octagonal numbers)". OEIS Foundation. https://oeis.org/A000567. Retrieved 2016-05-22. 
  37. Sloane, N. J. A., ed. "Sequence A005898 (Centered cube numbers)". OEIS Foundation. https://oeis.org/A005898. Retrieved 2016-05-22. 
  38. 38.0 38.1 Number of regions into which a figure made up of a row of 6 adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles OEISA306302 and OEISA331452
  39. Sloane, N. J. A., ed. "Sequence A005900 (Octahedral numbers)". OEIS Foundation. https://oeis.org/A005900. Retrieved 2016-05-22. 
  40. 40.0 40.1 Sloane, N. J. A., ed. "Sequence A005385 (Safe primes)". OEIS Foundation. https://oeis.org/A005385. Retrieved 2016-05-22. 
  41. Sloane, N. J. A., ed. "Sequence A059802 (Numbers k such that 5^k - 4^k is prime)". OEIS Foundation. https://oeis.org/A059802. 
  42. Sloane, N. J. A., ed. "Sequence A006036 (Primitive pseudoperfect numbers)". OEIS Foundation. https://oeis.org/A006036. Retrieved 2016-05-21. 
  43. Sloane, N. J. A., ed. "Sequence A000931 (Padovan sequence)". OEIS Foundation. https://oeis.org/A000931. Retrieved 2016-05-22. 
  44. Sloane, N. J. A., ed. "Sequence A032020 (Number of compositions (ordered partitions) of n into distinct parts)". OEIS Foundation. https://oeis.org/A032020. Retrieved 2022-05-24. 
  45. Sloane, N. J. A., ed. "Sequence A000538 (Sum of fourth powers: 0^4 + 1^4 + ... + n^4)". OEIS Foundation. https://oeis.org/A000538. 
  46. Sloane, N. J. A., ed. "Sequence A031971 (a(n) = Sum_{k=1..n} k^n)". OEIS Foundation. https://oeis.org/A031971. 
  47. Sloane, N. J. A., ed. "Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))". OEIS Foundation. https://oeis.org/A000258. 
  48. Sloane, N. J. A., ed. "Sequence A062786 (Centered 10-gonal numbers)". OEIS Foundation. https://oeis.org/A062786. Retrieved 2016-05-22. 
  49. Sloane, N. J. A., ed. "Sequence A005282 (Mian-Chowla sequence)". OEIS Foundation. https://oeis.org/A005282. Retrieved 2016-05-22. 
  50. Sloane, N. J. A., ed. "Sequence A001157 (a(n) = sigma_2(n): sum of squares of divisors of n)". OEIS Foundation. https://oeis.org/A001157. 
  51. Sloane, N. J. A., ed. "Sequence A000292 (Tetrahedral numbers)". OEIS Foundation. https://oeis.org/A000292. Retrieved 2016-05-22. 
  52. Sloane, N. J. A., ed. "Sequence A000292 (Tetrahedral (or triangular pyramidal) numbers)". OEIS Foundation. https://oeis.org/A000292. 
  53. Sloane, N. J. A., ed. "Sequence A126796 (Number of complete partitions of n)". OEIS Foundation. https://oeis.org/A126796. 
  54. Sloane, N. J. A., ed. "Sequence A001608 (Perrin sequence)". OEIS Foundation. https://oeis.org/A001608. Retrieved 2016-05-22. 
  55. Sloane, N. J. A., ed. "Sequence A006562 (Balanced primes)". OEIS Foundation. https://oeis.org/A006562. Retrieved 2016-05-22. 
  56. Sloane, N. J. A., ed. "Sequence A000068 (Numbers k such that k^4 + 1 is prime)". OEIS Foundation. https://oeis.org/A000068. 
  57. Sloane, N. J. A., ed. "Sequence A007678 (Number of regions in regular n-gon with all diagonals drawn)". OEIS Foundation. https://oeis.org/A007678. 
  58. Sloane, N. J. A., ed. "Sequence A003226 (Automorphic numbers)". OEIS Foundation. https://oeis.org/A003226. Retrieved 2016-05-22. 
  59. https://www.mathsisfun.com/puzzles/algebra-cow-solution.html
  60. Sloane, N. J. A., ed. "Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))". OEIS Foundation. https://oeis.org/A001845. Retrieved 2022-06-02. 
  61. Sloane, N. J. A., ed. "Sequence A050918 (Woodall primes)". OEIS Foundation. https://oeis.org/A050918. Retrieved 2016-05-22. 
  62. Sloane, N. J. A., ed. "Sequence A072385 (Primes which can be represented as the sum of a prime and its reverse)". OEIS Foundation. https://oeis.org/A072385. Retrieved 2019-06-02. 
  63. Sloane, N. J. A., ed. "Sequence A000330 (Square pyramidal numbers)". OEIS Foundation. https://oeis.org/A000330. Retrieved 2016-05-22. 
  64. Sloane, N. J. A., ed. "Sequence A005897 (a(n) = 6*n^2 + 2 for n > 0, a(0)=1)". OEIS Foundation. https://oeis.org/A005897. 
  65. Sloane, N. J. A., ed. "Sequence A000569 (Number of graphical partitions of 2n)". OEIS Foundation. https://oeis.org/A000569. 
  66. Sloane, N. J. A., ed. "Sequence A084192 (Array read by antidiagonals: T(n,k) = solution to postage stamp problem with n stamps and k denominations (n >= 1, k >= 1))". OEIS Foundation. https://oeis.org/A084192. 
  67. Sloane, N. J. A., ed. "Sequence A317712 (Number of uniform rooted trees with n nodes)". OEIS Foundation. https://oeis.org/A317712. 
  68. 68.0 68.1 Sloane, N. J. A., ed. "Sequence A162862 (Numbers n such that n^10 + n^9 + n^8 + n^7 + n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 is prime)". OEIS Foundation. https://oeis.org/A162862. Retrieved 2022-06-02. 
  69. Sloane, N. J. A., ed. "Sequence A006318 (Large Schröder numbers)". OEIS Foundation. https://oeis.org/A006318. Retrieved 2016-05-22. 
  70. Sloane, N. J. A., ed. "Sequence A002955 (Number of (unordered, unlabeled) rooted trimmed trees with n nodes)". OEIS Foundation. https://oeis.org/A002955.