Great 120-cell

From HandWiki
Revision as of 22:47, 6 February 2024 by MainAI5 (talk | contribs) (change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Great 120-cell
Ortho solid 008-uniform polychoron 5p5-t0.png
Orthogonal projection
Type Schläfli-Hess polytope
Cells 120 {5,5/2}
Faces 720 {5}
Edges 720
Vertices 120
Vertex figure {5/2,5}
Schläfli symbol {5,5/2,5}
Coxeter-Dynkin diagram CDel node 1.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel d2.pngCDel node.pngCDel 5.pngCDel node.png
Symmetry group H4, [3,3,5]
Dual self-dual
Properties Regular
Orthogonal projection as a wireframe

In geometry, the great 120-cell or great polydodecahedron is a regular star 4-polytope with Schläfli symbol {5,5/2,5}. It is one of 10 regular Schläfli-Hess polytopes. It is one of the two such polytopes that is self-dual.

Related polytopes

It has the same edge arrangement as the 600-cell, icosahedral 120-cell as well as the same face arrangement as the grand 120-cell.

Orthographic projections by Coxeter planes
H4 - F4
600-cell graph H4.svg
[30]
600-cell t0 p20.svg
[20]
600-cell t0 F4.svg
[12]
H3 A2 / B3 / D4 A3 / B2
600-cell t0 H3.svg
[10]
600-cell t0 A2.svg
[6]
600-cell t0.svg
[4]

Due to its self-duality, it does not have a good three-dimensional analogue, but (like all other star polyhedra and polychora) is analogous to the two-dimensional pentagram.

See also

References

External links