Biology:Latilactobacillus sakei

From HandWiki
Revision as of 14:30, 12 February 2024 by Importwiki (talk | contribs) (correction)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Short description: Species of bacterium


Latilactobacillus sakei
Lactobacillus spp..JPG
Scientific classification
Domain:
Phylum:
Class:
Order:
Lactobacillales
Family:
Genus:
Species:
L. sakei
Binomial name
Latilactobacillus sakei
(Katagiri et al. 1934) Zheng et al. 2020
Subspecies
  • subsp. carnosus (Torriani et al. 1996) Zheng et al. 2020
  • subsp. sakei (Katagiri et al. 1934) Zheng et al. 2020
Synonyms
  • Lactobacillus sakei corrig. Katagiri et al. 1934 (Approved Lists 1980)
  • Lactobacillus sake Katagiri et al. 1934 (Approved Lists 1980)
  • Lactobacillus bavaricus Stetter and Stetter 1980

Latilactobacillus sakei is the type species of the genus Latilactobacillus that was previously classified in the genus Lactobacillus.[1] It is homofermentative; hexoses are metabolized via glycolysis to lactic acid as main metabolite; pentoses are fermented via the Phosphoketolase pathway to lactic and acetic acids.[2]

Uses

Antilisterial strains of L. sakei are used in Europe for the production of saucisson and can be used for the conservation of fresh meat.[3]

L. sakei strains isolated from traditional dry sausage have a potential use as starter cultures.[4]

Inhibition of Listeria monocytogenes in chicken cold cuts can be obtained by addition of sakacin P and sakacin P-producing Lactobacillus sakei.[5]

Strain 2a of the subspecies L. sakei subsp. sakei can also be isolated from meat products.[6]

L. sakei is the dominant species during the manufacturing process of producing sake (Japanese rice wine) starter culture.[7]

Research suggests that L. sakei may play a role in maintaining healthy sinus cavities and preventing sinusitis.[8] A clinical study investigating the impact of probiotics in relieving the signs and symptoms of dry eye revealed promising results for the ophthalmic formulation of Latilactobacillus sakei, while the oral probiotic demonstrated no discernible benefits.[9]

Biochemistry

Bacteriocins production

Sakacins are bacteriocins of class II produced by L. sakei.

In strain CCUG 42687, their production is dependent on nutrients, temperature and pH.[10] Using the same strain, sakacin P can be produced in a completely defined medium.[11]

In strain CTC 494, the presence of salt and a curing agent (sodium chloride and sodium nitrite) reduces the production of the antilisterial bacteriocin sakacin K.[12] Growth of CTC 494 is also dependent on nutrients availability.[13]

Lactocin S is a bacteriocin produced by strain L45 of Lactobacillus sakei.[14]

Exopolysaccharide biosynthesis

Strain 0–1 of L. sakei produces exopolysaccharides.[15]

Prevention

Eugenol is a chemical compound that can be used to reduce the presence of L. sakei[16] as it disrupts its cellular membranes.[17]

Genetics

Genetic diversity within L. sakei has been assessed through the use of specifically designed PCR primers for detection using randomly amplified polymorphic DNA,[18] or by multi-locus sequence typing.[19]

Bacteriocin genes

Bacteriocin genes are located either on chromosomes or on plasmids. Strain 5 produces a plasmid-encoded bacteriocin that is identical to sakacin P, as well as two chromosomally encoded bacteriocins, which were designated sakacin T and sakacin X.[20]

LasX is a transcriptional regulator of the lactocin S biosynthetic genes in strain L45 of Lactobacillus sakei.[21]

Other genes

In strain LTH677, a starter organism used in meat fermentation, there is an oxygen-dependent regulation of the expression of the catalase gene katA.[22]

In strain LTH681, the stress operon dnaK has been characterized in 1999 as a heat shock protein gene.[23]

There is only one gene (IdhL) responsible for the lactic fermentation.[24]

Plasmids

A Theta-type plasmid has been characterized in Lactobacillus sakei in 2003. It is a potential basis for Low-Copy-Number vectors in lactobacilli.[25]

Vectors for inducible gene expression in L. sakei can be constructed. The key elements of these vectors are a regulatable promoter involved in the production of the bacteriocins sakacin A and sakacin P and the genes encoding the cognate histidine protein kinase and response regulator that are necessary to activate this promoter upon induction by a peptide pheromone.[26][27]

Genome

The genome of the meat-borne lactic acid bacterium Lactobacillus sakei 23K has been published in 2005.[28]

It is composed of 1884661 nucleotides forming 1879 protein genes and 84 RNA genes.[29]

References

  1. Zheng, Jinshui; Wittouck, Stijn; Salvetti, Elisa; Franz, Charles M.A.P.; Harris, Hugh M.B.; Mattarelli, Paola; O’Toole, Paul W.; Pot, Bruno et al. (2020). "A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae". International Journal of Systematic and Evolutionary Microbiology 70 (4): 2782–2858. doi:10.1099/ijsem.0.004107. ISSN 1466-5026. PMID 32293557. 
  2. Gänzle, Michael G (2015). "Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage" (in en). Current Opinion in Food Science. Food Microbiology • Functional Foods and Nutrition 2: 106–117. doi:10.1016/j.cofs.2015.03.001. ISSN 2214-7993. http://www.sciencedirect.com/science/article/pii/S2214799315000508. 
  3. Bredholt, S.; Nesbakken, T.; Holck, A. (2001). "Industrial application of an antilisterial strain of Lactobacillus sakei as a protective culture and its effect on the sensory acceptability of cooked, sliced, vacuum-packaged meats". International Journal of Food Microbiology 66 (3): 191–196. doi:10.1016/S0168-1605(00)00519-5. PMID 11428578. 
  4. Ammor, S.; Dufour, E.; Zagorec, M.; Chaillou, S. P.; Chevallier, I. (2005). "Characterization and selection of Lactobacillus sakei strains isolated from traditional dry sausage for their potential use as starter cultures". Food Microbiology 22 (6): 529–538. doi:10.1016/j.fm.2004.11.016. 
  5. Katla, T.; Moretro, T.; Sveen, I.; Aasen, I. M.; Axelsson, L.; Rorvik, L. M.; Naterstad, K. (2002). "Inhibition of Listeria monocytogenes in chicken cold cuts by addition of sakacin P and sakacin P-producing Lactobacillus sakei". Journal of Applied Microbiology 93 (2): 191–196. doi:10.1046/j.1365-2672.2002.01675.x. PMID 12147066. 
  6. Carvalho, K. T. G.; Bambirra, F. H. S.; Kruger, M. F.; Barbosa, M. S.; Oliveira, J. S.; Santos, A. M. C.; Nicoli, J. R.; Bemquerer, M. P. et al. (2009). "Antimicrobial compounds produced by Lactobacillus sakei subsp. Sakei 2a, a bacteriocinogenic strain isolated from a Brazilian meat product". Journal of Industrial Microbiology & Biotechnology 37 (4): 381–390. doi:10.1007/s10295-009-0684-y. PMID 20037770. http://www.alice.cnptia.embrapa.br/alice/handle/doc/869794. 
  7. Tsuji, Atsushi; Kozawa, Miyuki; Tokuda, Koji; Enomoto, Toshiki; Koyanagi, Takashi (November 2018). "Robust Domination of Lactobacillus sakei in Microbiota During Traditional Japanese Sake Starter Yamahai-Moto Fermentation and the Accompanying Changes in Metabolites". Current Microbiology 75 (11): 1498–1505. doi:10.1007/s00284-018-1551-8. ISSN 1432-0991. PMID 30116836. https://pubmed.ncbi.nlm.nih.gov/30116836/. 
  8. "Loss of normal microbial diversity may be culprit behind chronic sinusitis". 2012-09-13. http://www.news-medical.net/news/20120913/Loss-of-normal-microbial-diversity-may-be-culprit-behind-chronic-sinusitis.aspx. 
  9. "The Effect of Ophthalmic and Systemic Formulations of Latilactobacillus sakei on Clinical and Immunological Outcomes of Patients With Dry Eye Disease: A Factorial, Randomized, Placebo-controlled, and Triple-masking Clinical Trial". Probiotics Antimicrob Proteins. doi:10.1007/s12602-023-10079-1. PMID 37256485. https://doi.org/10.1007/s12602-023-10079-1. 
  10. Aasen, I. M.; Møretrø, T.; Katla, T.; Axelsson, L.; Storrø, I. (2000). "Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacillus sakei CCUG 42687". Applied Microbiology and Biotechnology 53 (2): 159–166. doi:10.1007/s002530050003. PMID 10709977. 
  11. Moretro, T.; Aasen, I. M.; Storro, I.; Axelsson, L. (2000). "Production of sakacin P by Lactobacillus sakei in a completely defined medium". Journal of Applied Microbiology 88 (3): 536–545. doi:10.1046/j.1365-2672.2000.00994.x. PMID 10747235. 
  12. The Presence of Salt and a Curing Agent Reduces Bacteriocin Production by Lactobacillus sakei CTC 494, a Potential Starter Culture for Sausage Fermentation. Frédéric Leroy and Luc de Vuyst, Appl. Environ. Microbiol., December 1999, vol. 65, no. 12, pages 5350-5356 (abstract)
  13. Leroy, F.; De Vuyst, L. (2001). "Growth of the Bacteriocin-Producing Lactobacillus sakei Strain CTC 494 in MRS Broth is Strongly Reduced Due to Nutrient Exhaustion: A Nutrient Depletion Model for the Growth of Lactic Acid Bacteria". Applied and Environmental Microbiology 67 (10): 4407–4413. doi:10.1128/AEM.67.10.4407-4413.2001. PMID 11571136. 
  14. Mørtvedt, C. I.; Nissen-Meyer, J.; Sletten, K.; Nes, I. F. (1991). "Purification and amino acid sequence of lactocin S, a bacteriocin produced by Lactobacillus sake L45". Applied and Environmental Microbiology 57 (6): 1829–1834. doi:10.1128/AEM.57.6.1829-1834.1991. PMID 1872611. 
  15. Degeest, B.; Janssens, B.; De Vuyst, L. (2001). "Exopolysaccharide (EPS) biosynthesis by Lactobacillus sakei 0-1: Production kinetics, enzyme activities and EPS yields". Journal of Applied Microbiology 91 (3): 470–477. doi:10.1046/j.1365-2672.2001.01404.x. PMID 11556912. 
  16. Gill, A. O.; Holley, R. A. (2004). "Mechanisms of Bactericidal Action of Cinnamaldehyde against Listeria monocytogenes and of Eugenol against L. Monocytogenes and Lactobacillus sakei". Applied and Environmental Microbiology 70 (10): 5750–5755. doi:10.1128/AEM.70.10.5750-5755.2004. PMID 15466510. 
  17. Gill, A. O.; Holley, R. A. (2006). "Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics". International Journal of Food Microbiology 108 (1): 1–9. doi:10.1016/j.ijfoodmicro.2005.10.009. PMID 16417936. 
  18. Berthier, F.; Ehrlich, S. D. (1999). "Genetic diversity within Lactobacillus sakei and Lactobacillus curvatus and design of PCR primers for its detection using randomly amplified polymorphic DNA". International Journal of Systematic Bacteriology 49 (3): 997–1007. doi:10.1099/00207713-49-3-997. PMID 10425756. 
  19. Chaillou, Stéphane; Lucquin, Isabelle; Najjari, Afef; Zagorec, Monique; Champomier-Vergès, Marie-Christine (2013). "Population genetics of Lactobacillus sakei reveals three lineages with distinct evolutionary histories". PLOS ONE 8 (9): e73253. doi:10.1371/journal.pone.0073253. ISSN 1932-6203. PMID 24069179. Bibcode2013PLoSO...873253C. 
  20. Vaughan, A.; Eijsink, V. G. H.; Van Sinderen, D. (2003). "Functional Characterization of a Composite Bacteriocin Locus from Malt Isolate Lactobacillus sakei 5". Applied and Environmental Microbiology 69 (12): 7194–7203. doi:10.1128/AEM.69.12.7194-7203.2003. PMID 14660366. 
  21. Rawlinson, E. L. A.; Nes, I. F.; Skaugen, M. (2002). "LasX, a transcriptional regulator of the lactocin S biosynthetic genes in Lactobacillus sakei L45, acts both as an activator and a repressor". Biochimie 84 (5–6): 559–567. doi:10.1016/S0300-9084(02)01420-7. PMID 12423800. 
  22. Oxygen-Dependent Regulation of the Expression of the Catalase Gene katA of Lactobacillus sakei LTH677. Christian Hertel, Gudrun Schmidt, Marc Fischer, Katja Oellers and Walter P. Hammes, Appl. Environ. Microbiol., April 1998, vol. 64, no. 4, pages 1359-1365 (abstract)
  23. Schmidt, G.; Hertel, C.; Hammes, W. P. (1999). "Molecular Characterisation of the dnaK Operon of Lactobacillus sakei LTH681". Systematic and Applied Microbiology 22 (3): 321–328. doi:10.1016/S0723-2020(99)80039-3. PMID 10553284. 
  24. Maleret, C.; Lauret, R.; Ehrlich, S. D.; Morel-Deville, F.; Zagorec, M. (1998). "Disruption of the sole IdhL gene in Lactobacillus sakei prevents the production of both L- and D-Iactate". Microbiology 144 (12): 3327–3333. doi:10.1099/00221287-144-12-3327. PMID 9884224. 
  25. Alpert, C. -A.; Crutz-Le Coq, A. -M.; Malleret, C.; Zagorec, M. (2003). "Characterization of a Theta-Type Plasmid from Lactobacillus sakei: A Potential Basis for Low-Copy-Number Vectors in Lactobacilli". Applied and Environmental Microbiology 69 (9): 5574–5584. doi:10.1128/AEM.69.9.5574-5584.2003. PMID 12957947. 
  26. Sørvig, E.; Grönqvist, S.; Naterstad, K.; Mathiesen, G.; Eijsink, V. G. H.; Axelsson, L. (2003). "Construction of vectors for inducible gene expression inLactobacillus sakeiandL. Plantarum". FEMS Microbiology Letters 229 (1): 119–126. doi:10.1016/S0378-1097(03)00798-5. PMID 14659551. 
  27. Sørvig, E.; Mathiesen, G.; Naterstad, K.; Eijsink, V. G. H.; Axelsson, L. (2005). "High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors". Microbiology 151 (7): 2439–2449. doi:10.1099/mic.0.28084-0. PMID 16000734. 
  28. Chaillou, S. P.; Champomier-Vergès, M. C.; Cornet, M.; Crutz-Le Coq, A. M.; Dudez, A. M.; Martin, V. R.; Beaufils, S.; Darbon-Rongère, E. et al. (2005). "The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K". Nature Biotechnology 23 (12): 1527–1533. doi:10.1038/nbt1160. PMID 16273110. 
  29. Lactobacillus sakei genome on KEGG at www.genome.jp

External links

"Latilactobacillus sakei". National Center for Biotechnology Information (NCBI). https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1599. 

Wikidata ☰ Q3825347 entry