208 (number)
From HandWiki
Short description: Natural number
| ||||
|---|---|---|---|---|
| Cardinal | two hundred eight | |||
| Ordinal | 208th (two hundred eighth) | |||
| Factorization | 24 × 13 | |||
| Greek numeral | ΣΗ´ | |||
| Roman numeral | CCVIII | |||
| Binary | 110100002 | |||
| Ternary | 212013 | |||
| Quaternary | 31004 | |||
| Quinary | 13135 | |||
| Senary | 5446 | |||
| Octal | 3208 | |||
| Duodecimal | 15412 | |||
| Hexadecimal | D016 | |||
| Vigesimal | A820 | |||
| Base 36 | 5S36 | |||
208 (two hundred [and] eight) is the natural number following 207 and preceding 209.
208 is a practical number,[1] a tetranacci number,[2][3] a rhombic matchstick number,[4] a happy number, and a member of Aronson's sequence.[5] There are exactly 208 five-bead necklaces drawn from a set of beads with four colors,[6] and 208 generalized weak orders on three labeled points.[7][8]
References
- ↑ Sloane, N. J. A., ed. "Sequence A005153 (Practical numbers)". OEIS Foundation. https://oeis.org/A005153.
- ↑ Sloane, N. J. A., ed. "Sequence A000078 (Tetranacci numbers)". OEIS Foundation. https://oeis.org/A000078.
- ↑ Waddill, Marcellus E. (1992), "The Tetranacci sequence and generalizations", The Fibonacci Quarterly 30 (1): 9–20, http://www.fq.math.ca/Scanned/30-1/waddill.pdf.
- ↑ Sloane, N. J. A., ed. "Sequence A045944 (Rhombic matchstick numbers)". OEIS Foundation. https://oeis.org/A045944.
- ↑ Sloane, N. J. A., ed. "Sequence A005224 (T is the first, fourth, eleventh, ... letter in this sentence, not counting spaces or commas (Aronson's sequence))". OEIS Foundation. https://oeis.org/A005224.
- ↑ Sloane, N. J. A., ed. "Sequence A001868 (Number of n-bead necklaces with 4 colors)". OEIS Foundation. https://oeis.org/A001868.
- ↑ Sloane, N. J. A., ed. "Sequence A004121 (Generalized weak orders on n points)". OEIS Foundation. https://oeis.org/A004121.
- ↑ Wagner, Carl G. (1982), "Enumeration of generalized weak orders", Archiv der Mathematik 39 (2): 147–152, doi:10.1007/BF01899195.

