Beta prime distribution

From HandWiki
Short description: Probability distribution
Beta prime
Probability density function
Cumulative distribution function
Parameters α>0 shape (real)
β>0 shape (real)
Support x[0,)
PDF f(x)=xα1(1+x)αβB(α,β)
CDF Ix1+x(α,β) where Ix(α,β) is the incomplete beta function
Mean αβ1 if β>1
Mode α1β+1 if α1, 0 otherwise
Variance α(α+β1)(β2)(β1)2 if β>2
Skewness 2(2α+β1)β3β2α(α+β1) if β>3
MGF Does not exist
CF eitΓ(α+β)Γ(β)G1,22,0(α+ββ,0|it)

In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind[1]) is an absolutely continuous probability distribution. If p[0,1] has a beta distribution, then the odds p1p has a beta prime distribution.

Definitions

Beta prime distribution is defined for x>0 with two parameters α and β, having the probability density function:

f(x)=xα1(1+x)αβB(α,β)

where B is the Beta function.

The cumulative distribution function is

F(x;α,β)=Ix1+x(α,β),

where I is the regularized incomplete beta function.

The expected value, variance, and other details of the distribution are given in the sidebox; for β>4, the excess kurtosis is

γ2=6α(α+β1)(5β11)+(β1)2(β2)α(α+β1)(β3)(β4).

While the related beta distribution is the conjugate prior distribution of the parameter of a Bernoulli distribution expressed as a probability, the beta prime distribution is the conjugate prior distribution of the parameter of a Bernoulli distribution expressed in odds. The distribution is a Pearson type VI distribution.[1]

The mode of a variate X distributed as β(α,β) is X^=α1β+1. Its mean is αβ1 if β>1 (if β1 the mean is infinite, in other words it has no well defined mean) and its variance is α(α+β1)(β2)(β1)2 if β>2.

For α<k<β, the k-th moment E[Xk] is given by

E[Xk]=B(α+k,βk)B(α,β).

For k with k<β, this simplifies to

E[Xk]=i=1kα+i1βi.

The cdf can also be written as

xα2F1(α,α+β,α+1,x)αB(α,β)

where 2F1 is the Gauss's hypergeometric function 2F1 .

Alternative parameterization

The beta prime distribution may also be reparameterized in terms of its mean μ > 0 and precision ν > 0 parameters ([2] p. 36).

Consider the parameterization μ = α/(β-1) and ν = β- 2, i.e., α = μ( 1 + ν) and β = 2 + ν. Under this parameterization E[Y] = μ and Var[Y] = μ(1 + μ)/ν.

Generalization

Two more parameters can be added to form the generalized beta prime distribution β(α,β,p,q):

having the probability density function:

f(x;α,β,p,q)=p(xq)αp1(1+(xq)p)αβqB(α,β)

with mean

qΓ(α+1p)Γ(β1p)Γ(α)Γ(β)if βp>1

and mode

q(αp1βp+1)1pif αp1

Note that if p = q = 1 then the generalized beta prime distribution reduces to the standard beta prime distribution.

This generalization can be obtained via the following invertible transformation. If yβ(α,β) and x=qy1/p for q,p>0, then xβ(α,β,p,q).

Compound gamma distribution

The compound gamma distribution[3] is the generalization of the beta prime when the scale parameter, q is added, but where p = 1. It is so named because it is formed by compounding two gamma distributions:

β(x;α,β,1,q)=0G(x;α,r)G(r;β,q)dr

where G(x;a,b) is the gamma pdf with shape a and inverse scale b.

The mode, mean and variance of the compound gamma can be obtained by multiplying the mode and mean in the above infobox by q and the variance by q2.

Another way to express the compounding is if rG(β,q) and xrG(α,r), then xβ(α,β,1,q). (This gives one way to generate random variates with compound gamma, or beta prime distributions. Another is via the ratio of independent gamma variates, as shown below.)

Properties

  • If Xβ(α,β) then 1Xβ(β,α).
  • If Yβ(α,β), and X=qY1/p, then Xβ(α,β,p,q).
  • If Xβ(α,β,p,q) then kXβ(α,β,p,kq).
  • β(α,β,1,1)=β(α,β)
  • If X1β(α,β) and X2β(α,β) two iid variables, then Y=X1+X2β(γ,δ) with γ=2α(α+β22β+2αβ4α+1)(β1)(α+β1) and δ=2α+β2β+2αβ4αα+β1, as the beta prime distribution is infinitely divisible.
  • More generally, let X1,...,Xnn iid variables following the same beta prime distribution, i.e. i,1in,Xiβ(α,β), then the sum S=X1+...+Xnβ(γ,δ) with γ=nα(α+β22β+nαβ2nα+1)(β1)(α+β1) and δ=2α+β2β+nαβ2nαα+β1.
  • If XF(2α,2β) has an F-distribution, then αβXβ(α,β), or equivalently, Xβ(α,β,1,βα).
  • If XBeta(α,β) then X1Xβ(α,β).
  • If Xβ(α,β) then X1+XBeta(α,β).
  • For gamma distribution parametrization I:
    • If XkΓ(αk,θk) are independent, then X1X2β(α1,α2,1,θ1θ2). Note θ1,θ2,θ1θ2 are all scale parameters for their respective distributions.
  • For gamma distribution parametrization II:
    • If XkΓ(αk,βk) are independent, then X1X2β(α1,α2,1,β2β1). The βk are rate parameters, while β2β1 is a scale parameter.
    • If β2Γ(α1,β1) and X2β2Γ(α2,β2), then X2β(α2,α1,1,β1). The βk are rate parameters for the gamma distributions, but β1 is the scale parameter for the beta prime.
  • β(p,1,a,b)=Dagum(p,a,b) the Dagum distribution
  • β(1,p,a,b)=SinghMaddala(p,a,b) the Singh–Maddala distribution.
  • β(1,1,γ,σ)=LL(γ,σ) the log logistic distribution.
  • The beta prime distribution is a special case of the type 6 Pearson distribution.
  • If X has a Pareto distribution with minimum xm and shape parameter α, then Xxm1β(1,α).
  • If X has a Lomax distribution, also known as a Pareto Type II distribution, with shape parameter α and scale parameter λ, then Xλβ(1,α).
  • If X has a standard Pareto Type IV distribution with shape parameter α and inequality parameter γ, then X1γβ(1,α), or equivalently, Xβ(1,α,1γ,1).
  • The inverted Dirichlet distribution is a generalization of the beta prime distribution.
  • If Xβ(α,β), then lnX has a generalized logistic distribution. More generally, if Xβ(α,β,p,q), then lnX has a scaled and shifted generalized logistic distribution.

Notes

  1. 1.0 1.1 Johnson et al (1995), p 248
  2. Bourguignon, M.; Santos-Neto, M.; de Castro, M. (2021). "A new regression model for positive random variables with skewed and long tail". Metron 79: 33–55. doi:10.1007/s40300-021-00203-y. 
  3. Dubey, Satya D. (December 1970). "Compound gamma, beta and F distributions". Metrika 16: 27–31. doi:10.1007/BF02613934. 

References

  • Johnson, N.L., Kotz, S., Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume 2 (2nd Edition), Wiley. ISBN 0-471-58494-0
  • Bourguignon, M.; Santos-Neto, M.; de Castro, M. (2021), "A new regression model for positive random variables with skewed and long tail", Metron 79: 33–55, doi:10.1007/s40300-021-00203-y