Biology:Alpha Arrestin

From HandWiki
Figure 1: Structure of the human α-arrestin TXNIP (accession Q9H3M7) predicted by AlphaFold. Blue and yellow portions highlight the conserved N- and C-terminal arrestin-fold domains, respectively. The gray region shows residues that make up the C-terminal tail region which contains the L/PPxY motifs responsible for binding ubiquitin ligases.

The arrestin family of proteins is subdivided into α-arrestins (also referred to as arrestin-related trafficking adaptors (ARTs) or arrestin-like yeast proteins (ALYs) in yeast or ARRDCs (arrestin domain containing proteins) in mammals, β-arrestins (also referred to as visual and non-visual arrestins) and Vps26-like arrestins proteins.[1][2][3][4] The α-Arrestins are an ancestral branch of the larger arrestin family of proteins and they are conserved across eukaryotes but are best characterized in the budding yeast Saccharomyces cerevisiae; to-date there are 6 α-arrestins identified in mammalian cells (arrestin-domain containing proteins [ARRDC]1-5 and thioredoxin interacting protein [TXNIP]) and 14 α-arrestins identified in the budding yeast Saccharomyces cerevisiae. The yeast α-arrestin family comprises Ldb19/Art1, Ecm21/Art2, Aly1/Art6, Aly2/Art3, Rod1/Art4, Rog3/Art7, Art5, Csr2/Art8, Rim8/Art9, Art10, Bul1, Bul2, Bul3 and Spo23. The best characterized α-arrestin function to date is their endocytic regulation of plasma membrane proteins, including G-protein coupled receptors (GPCRs) and nutrient transporters (reviewed in[5][6]).[7][8][9][10][11][12][13][14][15][16][17] α-Arrestins control endocytosis of these membrane proteins in response to cellular stressors, including nutrient or metal ion excess.

Structure

All members of the arrestin protein family possess two arrestin-fold domains consisting of 7 anti-parallel beta-sheets assembled into a β-sandwich structure.[2][3] β-arrestins contain a polar core flanked on both sides by the arrestin N- and C-terminal fold domains. They also contain domains responsible for binding components of the endocytic machinery (i.e. a clathrin binding box and an AP-2 binding site).[18][19] These key structural features allow for β-arrestins to regulate endocytic turnover of G-protein coupled receptors (GPCRs) expressed at the mammalian plasma membrane.[18][19] It is unclear if α-arrestins lack each of these structural features thought to distinguish the β-arrestins from the α-arrestins. However, α-arrestins directly bind clathrin adaptor complex proteins[10] and until more extensive structural and interaction studies of α-arrestins are performed, we will not know the degree of conservation for these functional features. A distinguishing characteristic in the α-arrestins is the presence of a Leucine/Proline-Proline-x-Tyrosine (L/PPXY where x represents any amino acid) consensus motif that extends from the C-terminal arrestin-fold domain. In yeast α-arrestins, these L/PPXY motifs bind to WW domains found in a variety of proteins including the ubiquitin ligase Rsp5, which is a member of the NEDD4 ubiquitin ligase family.[20][21][22][23] In yeast, these motifs are required for α-arrestin-mediated endocytosis of membrane proteins.[22][10][14][12][24][25][13][16][26][27] Analogously, binding of mammalian α-arrestins with NEDD4-family ubiquitin ligases is required for ARRDC protein trafficking.[28]

Function

Figure 2: Basic mechanism of α-arrestin function. α-Arrestins are activated by signaling mechanisms that respond to nutrient excess or stress. In response to a variety of metabolic stimuli, α-arrestins bind to their corresponding membrane protein cargoes and by using their characteristic L/PPxY domains, bind WW domains of Rsp5. This brings Rsp5 into close proximity with the target membrane protein, resulting in that cargo's ubiquitination and subsequent endocytosis.

The related β-arrestins are the best studied members of the arrestin family. They act as multi-faceted protein trafficking adaptors that bind to membrane proteins at the plasma membrane, including GPCRs, and interact with the AP-2 adaptin complex and clathrin to promote endocytosis of these membrane proteins.[29][30] β-arrestins additionally regulate post-endocytic sorting of membrane proteins and act as signaling scaffolds by associating with several protein kinases to localize their activity.[30] The α-arrestin’s functions are best characterized in the budding yeast Saccharomyces cerevisiae.Like the related β-arrestins, α-arrestins bind selectively to membrane proteins and promote their endocytosis in a signaling-dependent manner. However, the physiological roles and molecular mechanisms by which α-arrestins function are still emerging. Briefly, α-arrestins bind to membrane proteins and, via their L/PPXY motifs, bind the WW domain of the Rsp5 ubiquitin ligase.[21][22][23][20] By binding to both the membrane protein and ubiquitin ligase, α-arrestins serve as a bridge between these two factors, bring the ubiquitin ligase into close-proximity with its membrane protein substrate. Ubiquitination of the membrane protein is a common signal that promotes endocytosis, acting as a molecular signpost[31] that allows for interaction of the membrane protein with endocytic machinery containing ubiquitin-interacting motifs. Similar to their yeast relatives, mammalian α-arrestins bind ubiquitin ligases in the NEDD4 family using this same mechanism.[32][33][23][34][35][36] The mechanism by which α-arrestins selectively recognize transmembrane proteins requires further study, but some α-arrestins possess a basic patch between their two arrestin-fold domains that interact with patches of acidic amino acids on the cytoplasmic face of target transmembrane proteins.[37] The role of α-arrestins in protein trafficking is expanding and yeast α-arrestins localize to the trans-Golgi network (TGN) where they regulate sorting of membrane proteins.[38][39][10][40][41][42][43] For example, upon exposure to glucose, the yeast α-arrestins Bul1 and Rod1 promote ubiquitination of the lactate transporter Jen1 to initiate endocytosis, but then Rod1 is essential for post-endocytic sorting of Jen1 to the multi-vesicular body (MVB) pathway.[12][40][43] It is clear that α-arrestin activity is often tightly controlled by metabolic signaling pathways including those governed by the major nutrient sensing kinases TORC1 and AMPK. Thus, α-arrestins link cellular metabolic status with selective endocytosis of nutrient transporters to help cells adapt to nutrient availability. For example, the yeast α-arrestin Rod1 promotes endocytosis of the glucose transporter Hxt6 and the lactate transporter Jen1 in glucose replete conditions but under glucose starvation conditions Rod1 activity is impeded by phospho-regulation.[12] However, in response to glucose starvation or treatement with 2-deoxyglucose, a toxic analog of glucose that disrupts cellular metabolism, Csr2 or Rod1, respectively, stimulate endocytosis of the low affinity, high capacity glucose transporters Hxt1 and Hxt3.[44][45][46][39][12][43][14] In contrast, amino acid excess in yeast initiates endocytosis of the methionine or arginine amino acid transporters, Mup1 and Can1, respectively, and this requires the activity of Ecm21.[47][13] In humans, theα-arrestins ARRDC3 and TXNIP are similarly nutrient regulated, being insulin-responsive; Inhibition of TXNIP by insulin diminishes the endocytosis of the glucose transporter GLUT4 and activation of TXNIP by the toxic glucose analog 2DG stimulates glucose transporter GLUT1 internalization in HepG2 cells.[48][49][50][51][52] Thus, α-arrestins are critical for fundamental responses to complex metabolic signaling networks present in mammals.

Regulation

Ubiquitin-dependent regulation of α-arrestin activity

The activity of α-arrestins is tightly regulated by post-translational modifications dictated by environmental cues and metabolic signaling. α-Arrestins are themselves mono-ubiquitinated by the Rsp5 ubiquitin ligase and, in most cases, this modification is required for optimal function.[22][12][16][53][25][14][8] For example, Ldb19-dependent endocytosis of the yeast arginine transporter Can1 requires ubiquitination at K486.[22] In response to glucose exposure, ubiquitination of Rod1 is critical for the endocytosis of lactate transporter Jen1.[12] In contrast, Rod1 ubiquitination is not required for endocytosis of the low affinity glucose transporters Hxt1 and Hxt3.[14] Additionally, the endocytosis of the general amino acid permease Gap1 triggered by stress conditions, occurs without altering the ubiquitination status of the α-arrestins involved; Bul1/2 and Aly1/2.[9] Therefore, mono-ubiquitination contributes to α-arrestin activation in some, but not all cases. α-Arrestins can be poly-ubiquitinated on amino acids distinct from the sites of Rsp5 mono-ubiquitination. Attachment of Lys(63)-linked polyubiquitination chains induces proteasomal degradation of several α-arrestins, which is antagonized by the deubiquitinating enzymes (DUBs) Ubp2 and Ubp15.[46][54] A remaining open question is how ubiquitination regulates α-arrestin function on a mechanistic level. In multiple cases it seems that ubiquitination may control the subcellular localization of α-arrestins. In the context of Ldb19, ubiquitination is required for its endocytic function and subcellular localization, as mutants that cannot be mono-ubiquitinated accumulate diffusely in the cytosol.[22] Ubiquitination of α-arrestins can regulate interaction with select substrates such as is the case for Rim8, which mediates binding of the pH sensor Rim21 with ESCRT machinery.[55] Mono-ubiquitination of Rim8 by Rsp5 promotes binding of ESCRT-I subunit Vps23, preventing poly-ubiquitination of Rim8 by Rsp5.[56]

Regulation of α-arrestins by phosphorylation

Phosphorylation is another critical regulatory mechanism controlling α-arrestin function. Overall, phosphorylation is thought to inhibit α-arrestin-mediated endocytosis and is considered a primary means by which α-arrestins are regulated. Phosphorylation status for many of the yeast α-arrestins is regulated by major nutrient sensing kinases, including the target of rapamycin complex 1 (TORC1) and AMP-activated kinase (AMPK) and/or their downstream effectors. This regulation highlights that coupling of α-arrestin function with metabolic status. In some cases, phosphorylation of α-arrestins creates binding sites for 14-3-3 proteins which in turn impede interactions with the ubiquitin ligase, and thus block α-arrestin function.[57][12][16][40][25] Binding of 14-3-3 proteins to the α-arrestins may impair their function by hindering Rsp5-mediated ubiquitination or may promote deubiquitination, but the underlying mechanisms remains unclear.[12][16][40][25] Phosphorylation can also alter α-arrestins’ function by changing their subcellular localization.[38][40] In the case of Ldb19, phosphorylation leaves the protein primarily localized in the cytosol or Golgi, whereas the dephosphorylated species can associate with the plasma membrane and promote endocytosis of the methionine permease Mup1.[58] Phosphorylation status of α-arrestins is controlled by major nutrient sensing kinases including TORC1, which is responsible for stimulation of cell growth by promoting anabolic process and inhibiting catabolic processes. Substrate-induced endocytosis of the amino acid permeases Can1, Mup1, Lyp1, Fur4, and Tat2 is controlled indirectly by TORC1-dependent phospho-regulation of Ldb19.[38][59][60] TORC1 phosphorylates the downstream kinase Npr1 in response to amino acid flux, hindering its activity. When TORC1 becomes inactive in response to low amino acids, Npr1 becomes an active kinase and phosphorylates Ldb19, thereby preventing Ldb19 recruitment to the plasma membrane.[38] Substrate-induced endocytosis can also be promoted by Ecm21 and Aly2 where Npr1-dependent phosphorylation events were detected on these α-arrestins.[10][38][61][62] There is some promise for additional TORC1-controlled pathways affecting phosphorylation status of the α-arrestins where endocytosis of thiamine transporter, Thi7, mediated by Ecm21 requires TORC1 activity, but is independent of Npr1 activity.[17] Therefore, it is possible that many other α-arrestins are controlled by TORC1-dependent signaling cascades under certain conditions.[11] α-Arrestin phosphorylation is controlled in many cases by AMPK (Snf1 in budding yeast), which is required for adaptation to glucose limitation and for utilization of non-preferred carbon sources. Snf1 regulates cell metabolism in a multitude of different signaling pathways, which includes altering the expression of glucose transporters at the plasma membrane .[6][14][45] When cells are grown in glucose-depleted conditions, Snf1 becomes active and directly phosphorylates and inhibits Rod1- and Rog3-mediated endocytosis of glucose transporters Hxt1 and Hxt3 and the Jen1 lactate transporter.[14][45][63][12][40] Phosphorylation of Rod1 promotes its binding to 14-3-3 proteins, thereby inhibiting its activity. In contrast, phosphorylation of Rog3 by Snf1 promotes its degradation.[14][12] The regulation of Rog3 stability in this context is strikingly similar to that observed for the mammalian α-arrestin TXNIP.[50] TXNIP is required for the endocytosis of the glucose transporter GLUT1, and its phosphorylation by AMPK targets it for degradation, preventing GLUT1 internalization.[50] Therefore, α-arrestin activity is controlled by carbohydrate availability through AMPK, and the underlying mechanisms may have a degree of conservation between humans and yeast.

References

  1. Shi, Hang; Rojas, Raul; Bonifacino, Juan S.; Hurley, James H. (June 2006). "The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain". Nature Structural & Molecular Biology 13 (6): 540–548. doi:10.1038/nsmb1103. ISSN 1545-9993. PMID 16732284. 
  2. 2.0 2.1 Alvarez, Carlos E (2008). "On the origins of arrestin and rhodopsin" (in en). BMC Evolutionary Biology 8 (1): 222. doi:10.1186/1471-2148-8-222. ISSN 1471-2148. PMID 18664266. 
  3. 3.0 3.1 Aubry, Laurence; Klein, Gérard (2013), "True Arrestins and Arrestin-Fold Proteins" (in en), Progress in Molecular Biology and Translational Science (Elsevier) 118: 21–56, doi:10.1016/b978-0-12-394440-5.00002-4, ISBN 978-0-12-394440-5, PMID 23764049, https://linkinghub.elsevier.com/retrieve/pii/B9780123944405000024, retrieved 2022-03-18 
  4. de Mendoza, Alex; Sebé-Pedrós, Arnau; Ruiz-Trillo, Iñaki (March 2014). "The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity". Genome Biology and Evolution 6 (3): 606–619. doi:10.1093/gbe/evu038. ISSN 1759-6653. PMID 24567306. 
  5. Kahlhofer, Jennifer; Leon, Sebastien; Teis, David; Schmidt, Oliver (April 2021). "The α-arrestin family of ubiquitin ligase adaptors links metabolism with selective endocytosis". Biology of the Cell 113 (4): 183–219. doi:10.1111/boc.202000137. ISSN 1768-322X. PMID 33314196. https://pubmed.ncbi.nlm.nih.gov/33314196. 
  6. 6.0 6.1 O’Donnell, Allyson F.; Schmidt, Martin C. (2019-01-25). "AMPK-Mediated Regulation of Alpha-Arrestins and Protein Trafficking" (in en). International Journal of Molecular Sciences 20 (3): 515. doi:10.3390/ijms20030515. ISSN 1422-0067. PMID 30691068. 
  7. Alvaro, Christopher G; Aindow, Ann; Thorner, Jeremy (2016-05-01). "Differential Phosphorylation Provides a Switch to Control How α-Arrestin Rod1 Down-regulates Mating Pheromone Response in Saccharomyces cerevisiae" (in en). Genetics 203 (1): 299–317. doi:10.1534/genetics.115.186122. ISSN 1943-2631. PMID 26920760. 
  8. 8.0 8.1 Hager, natalie A.; Krasowski, Collin J.; Mackie, Timothy D.; Kolb, Alexander R.; Needham, Patrick G.; Augustine, Andrew A.; Dempsey, Alison; Szent-Gyorgyi, Christopher et al. (July 2018). "Select α-arrestins control cell-surface abundance of the mammalian Kir2.1 potassium channel in a yeast model" (in en). Journal of Biological Chemistry 293 (28): 11006–11021. doi:10.1074/jbc.RA117.001293. PMID 29784874. 
  9. 9.0 9.1 Crapeau, Myriam; Merhi, Ahmad; André, Bruno (August 2014). "Stress Conditions Promote Yeast Gap1 Permease Ubiquitylation and Down-regulation via the Arrestin-like Bul and Aly Proteins" (in en). Journal of Biological Chemistry 289 (32): 22103–22116. doi:10.1074/jbc.M114.582320. PMID 24942738. 
  10. 10.0 10.1 10.2 10.3 10.4 O'Donnell, Allyson F.; Apffel, Alex; Gardner, Richard G.; Cyert, Martha S. (2010-10-15). Drubin, David G.. ed. "α-Arrestins Aly1 and Aly2 Regulate Intracellular Trafficking in Response to Nutrient Signaling" (in en). Molecular Biology of the Cell 21 (20): 3552–3566. doi:10.1091/mbc.e10-07-0636. ISSN 1059-1524. PMID 20739461. 
  11. 11.0 11.1 Dokládal, Ladislav; Stumpe, Michael; Hu, Zehan; Jaquenoud, Malika; Dengjel, Jörn; De Virgilio, Claudio (December 2021). "Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast" (in en). Cell Reports 37 (13): 110149. doi:10.1016/j.celrep.2021.110149. PMID 34965436. https://linkinghub.elsevier.com/retrieve/pii/S2211124721016454. 
  12. 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 Becuwe, Michel; Vieira, Neide; Lara, David; Gomes-Rezende, Jéssica; Soares-Cunha, Carina; Casal, Margarida; Haguenauer-Tsapis, Rosine; Vincent, Olivier et al. (2012-01-23). "A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis" (in en). Journal of Cell Biology 196 (2): 247–259. doi:10.1083/jcb.201109113. ISSN 1540-8140. PMID 22249293. PMC 3265958. https://rupress.org/jcb/article/196/2/247/36720/A-molecular-switch-on-an-arrestinlike-protein. 
  13. 13.0 13.1 13.2 Ivashov, Vasyl; Zimmer, Johannes; Schwabl, Sinead; Kahlhofer, Jennifer; Weys, Sabine; Gstir, Ronald; Jakschitz, Thomas; Kremser, Leopold et al. (2020-08-03). "Complementary α-arrestin-ubiquitin ligase complexes control nutrient transporter endocytosis in response to amino acids" (in en). eLife 9: e58246. doi:10.7554/eLife.58246. ISSN 2050-084X. PMID 32744498. PMC 7449699. https://elifesciences.org/articles/58246. 
  14. 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 O'Donnell, Allyson F.; McCartney, Rhonda R.; Chandrashekarappa, Dakshayini G.; Zhang, Bob B.; Thorner, Jeremy; Schmidt, Martin C. (2015-03-15). "2-Deoxyglucose Impairs Saccharomyces cerevisiae Growth by Stimulating Snf1-Regulated and α-Arrestin-Mediated Trafficking of Hexose Transporters 1 and 3" (in en). Molecular and Cellular Biology 35 (6): 939–955. doi:10.1128/MCB.01183-14. ISSN 0270-7306. PMID 25547292. 
  15. Sen, Arpita; Hsieh, Wen-Chieh; Hanna, Claudia B.; Hsu, Chuan-Chih; Pearson, McKeith; Tao, W. Andy; Aguilar, R. Claudio (2020-01-01). "The Na+ pump Ena1 is a yeast Epsin-specific cargo requiring its ubiquitination/phosphorylation sites for internalization" (in en). Journal of Cell Science 133 (16): jcs.245415. doi:10.1242/jcs.245415. ISSN 1477-9137. PMID 32694166. https://journals.biologists.com/jcs/article/doi/10.1242/jcs.245415/266485/The-Na-pump-Ena1-is-a-yeast-Epsin-specific-cargo. 
  16. 16.0 16.1 16.2 16.3 16.4 Merhi, Ahmad; André, Bruno (2012-11-15). "Internal Amino Acids Promote Gap1 Permease Ubiquitylation via TORC1/Npr1/14-3-3-Dependent Control of the Bul Arrestin-Like Adaptors" (in en). Molecular and Cellular Biology 32 (22): 4510–4522. doi:10.1128/MCB.00463-12. ISSN 0270-7306. PMID 22966204. 
  17. 17.0 17.1 Savocco, Jérôme; Nootens, Sylvain; Afokpa, Wilhelmine; Bausart, Mathilde; Chen, Xiaoqian; Villers, Jennifer; Renard, Henri-François; Prévost, Martine et al. (2019-10-28). Schmid, Sandra L. ed. "Yeast α-arrestin Art2 is the key regulator of ubiquitylation-dependent endocytosis of plasma membrane vitamin B1 transporters" (in en). PLOS Biology 17 (10): e3000512. doi:10.1371/journal.pbio.3000512. ISSN 1545-7885. PMID 31658248. 
  18. 18.0 18.1 Goodman, Oscar B.; Krupnick, Jason G.; Santini, Francesca; Gurevich, Vsevolod V.; Penn, Raymond B.; Gagnon, Alison W.; Keen, James H.; Benovic, Jeffrey L. (October 1996). "β-Arrestin acts as a clathrin adaptor in endocytosis of the β2-adrenergic receptor" (in en). Nature 383 (6599): 447–450. doi:10.1038/383447a0. ISSN 0028-0836. PMID 8837779. Bibcode1996Natur.383..447G. http://www.nature.com/articles/383447a0. 
  19. 19.0 19.1 Laporte, S. A.; Oakley, R. H.; Zhang, J.; Holt, J. A.; Ferguson, S. S.; Caron, M. G.; Barak, L. S. (1999-03-30). "The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis". Proceedings of the National Academy of Sciences of the United States of America 96 (7): 3712–3717. doi:10.1073/pnas.96.7.3712. ISSN 0027-8424. PMID 10097102. Bibcode1999PNAS...96.3712L. 
  20. 20.0 20.1 Gupta, Ronish; Kus, Bart; Fladd, Christopher; Wasmuth, James; Tonikian, Raffi; Sidhu, Sachdev; Krogan, Nevan J; Parkinson, John et al. (January 2007). "Ubiquitination screen using protein microarrays for comprehensive identification of Rsp5 substrates in yeast" (in en). Molecular Systems Biology 3 (1): 116. doi:10.1038/msb4100159. ISSN 1744-4292. PMID 17551511. 
  21. 21.0 21.1 Andoh, Tomoko; Hirata, Yuzoh; Kikuchi, Akira (2002-08-14). "PY motifs of Rod1 are required for binding to Rsp5 and for drug resistance". FEBS Letters 525 (1–3): 131–134. doi:10.1016/s0014-5793(02)03104-6. ISSN 0014-5793. PMID 12163175. https://pubmed.ncbi.nlm.nih.gov/12163175. 
  22. 22.0 22.1 22.2 22.3 22.4 22.5 Lin, Charles H.; MacGurn, Jason A.; Chu, Tony; Stefan, Christopher J.; Emr, Scott D. (November 2008). "Arrestin-Related Ubiquitin-Ligase Adaptors Regulate Endocytosis and Protein Turnover at the Cell Surface" (in en). Cell 135 (4): 714–725. doi:10.1016/j.cell.2008.09.025. PMID 18976803. https://linkinghub.elsevier.com/retrieve/pii/S0092867408011823. 
  23. 23.0 23.1 23.2 Rauch, Susanne; Martin-Serrano, Juan (April 2011). "Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding". Journal of Virology 85 (7): 3546–3556. doi:10.1128/JVI.02045-10. ISSN 1098-5514. PMID 21191027. 
  24. Alvaro, Christopher G.; O'Donnell, Allyson F.; Prosser, Derek C.; Augustine, Andrew A.; Goldman, Aaron; Brodsky, Jeffrey L.; Cyert, Martha S.; Wendland, Beverly et al. (2014-07-15). "Specific α-Arrestins Negatively Regulate Saccharomyces cerevisiae Pheromone Response by Down-Modulating the G-Protein-Coupled Receptor Ste2" (in en). Molecular and Cellular Biology 34 (14): 2660–2681. doi:10.1128/MCB.00230-14. ISSN 0270-7306. PMID 24820415. 
  25. 25.0 25.1 25.2 25.3 Hovsepian, Junie; Defenouillère, Quentin; Albanèse, Véronique; Váchová, Libuše; Garcia, Camille; Palková, Zdena; Léon, Sébastien (2017-06-05). "Multilevel regulation of an α-arrestin by glucose depletion controls hexose transporter endocytosis" (in en). Journal of Cell Biology 216 (6): 1811–1831. doi:10.1083/jcb.201610094. ISSN 0021-9525. PMID 28468835. PMC 5461024. https://rupress.org/jcb/article/216/6/1811/38993/Multilevel-regulation-of-an-%CE%B1arrestin-by-glucose. 
  26. Prosser, Derek C.; Pannunzio, Anthony E.; Brodsky, Jeffrey L.; Thorner, Jeremy; Wendland, Beverly; O'Donnell, Allyson F. (2015-01-01). "Alpha-arrestins participate in cargo selection for both clathrin-independent and clathrin-mediated endocytosis" (in en). Journal of Cell Science 128 (22): 4220–4234. doi:10.1242/jcs.175372. ISSN 1477-9137. PMID 26459639. 
  27. Robinson, Benjamin P.; Hawbaker, Sarah; Chiang, Annette; Jordahl, Eric M.; Anaokar, Sanket; Nikiforov, Alexiy; Bowman, Ray W.; Ziegler, Philip et al. (January 2022). "Alpha‐arrestins Aly1/Art6 and Aly2/Art3 regulate trafficking of the glycerophosphoinositol transporter Git1 and impact phospholipid homeostasis" (in en). Biology of the Cell 114 (1): 3–31. doi:10.1111/boc.202100007. ISSN 0248-4900. PMID 34562280. https://onlinelibrary.wiley.com/doi/10.1111/boc.202100007. 
  28. Han, Sang‐Oh; Kommaddi, Reddy P; Shenoy, Sudha K (February 2013). "Distinct roles for β‐arrestin2 and arrestin‐domain‐containing proteins in β 2 adrenergic receptor trafficking" (in en). EMBO Reports 14 (2): 164–171. doi:10.1038/embor.2012.187. ISSN 1469-221X. PMID 23208550. 
  29. Weinberg, Zara Y.; Puthenveedu, Manojkumar A. (February 2019). "Regulation of G protein‐coupled receptor signaling by plasma membrane organization and endocytosis" (in en). Traffic 20 (2): 121–129. doi:10.1111/tra.12628. ISSN 1398-9219. PMID 30536564. 
  30. 30.0 30.1 Miller, W. E.; Lefkowitz, R. J. (April 2001). "Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking". Current Opinion in Cell Biology 13 (2): 139–145. doi:10.1016/s0955-0674(00)00190-3. ISSN 0955-0674. PMID 11248546. https://pubmed.ncbi.nlm.nih.gov/11248546. 
  31. Lauwers, Elsa; Erpapazoglou, Zoi; Haguenauer-Tsapis, Rosine; André, Bruno (April 2010). "The ubiquitin code of yeast permease trafficking". Trends in Cell Biology 20 (4): 196–204. doi:10.1016/j.tcb.2010.01.004. ISSN 1879-3088. PMID 20138522. https://pubmed.ncbi.nlm.nih.gov/20138522. 
  32. Nabhan, Joseph F.; Pan, Hui; Lu, Quan (August 2010). "Arrestin domain-containing protein 3 recruits the NEDD4 E3 ligase to mediate ubiquitination of the beta2-adrenergic receptor". EMBO Reports 11 (8): 605–611. doi:10.1038/embor.2010.80. ISSN 1469-3178. PMID 20559325. 
  33. Zhang, Pingzhao; Wang, Chenji; Gao, Kun; Wang, Dejie; Mao, Jun; An, Jian; Xu, Chen; Wu, Di et al. (2010-03-19). "The ubiquitin ligase itch regulates apoptosis by targeting thioredoxin-interacting protein for ubiquitin-dependent degradation". The Journal of Biological Chemistry 285 (12): 8869–8879. doi:10.1074/jbc.M109.063321. ISSN 1083-351X. PMID 20068034. 
  34. Shea, Fortune F.; Rowell, Jennie L.; Li, Yechaowei; Chang, Tien-Hsien; Alvarez, Carlos E. (2012-12-07). Means, Robert E.. ed. "Mammalian Alpha Arrestins Link Activated Seven Transmembrane Receptors to Nedd4 Family E3 Ubiquitin Ligases and Interact with Beta Arrestins" (in en). PLOS ONE 7 (12): e50557. doi:10.1371/journal.pone.0050557. ISSN 1932-6203. PMID 23236378. Bibcode2012PLoSO...750557S. 
  35. Qi, Shiqian; O'Hayre, Morgan; Gutkind, J. Silvio; Hurley, James H. (2014-02-21). "Structural and biochemical basis for ubiquitin ligase recruitment by arrestin-related domain-containing protein-3 (ARRDC3)". The Journal of Biological Chemistry 289 (8): 4743–4752. doi:10.1074/jbc.M113.527473. ISSN 1083-351X. PMID 24379409. 
  36. Liu, Yanli; Lau, Johnathan; Li, Weiguo; Tempel, Wolfram; Li, Li; Dong, Aiping; Narula, Ashrut; Qin, Su et al. (2016-01-05). "Structural basis for the regulatory role of the PPxY motifs in the thioredoxin-interacting protein TXNIP". Biochemical Journal 473 (2): 179–187. doi:10.1042/bj20150830. ISSN 0264-6021. PMID 26527736. http://dx.doi.org/10.1042/bj20150830. 
  37. Guiney, Evan L.; Klecker, Till; Emr, Scott D. (2016-12-15). "Identification of the endocytic sorting signal recognized by the Art1-Rsp5 ubiquitin ligase complex". Molecular Biology of the Cell 27 (25): 4043–4054. doi:10.1091/mbc.e16-08-0570. ISSN 1059-1524. PMID 27798240. PMC 5156545. http://dx.doi.org/10.1091/mbc.e16-08-0570. 
  38. 38.0 38.1 38.2 38.3 38.4 MacGurn, Jason A.; Hsu, Pi-Chiang; Smolka, Marcus B.; Emr, Scott D. (November 2011). "TORC1 Regulates Endocytosis via Npr1-Mediated Phosphoinhibition of a Ubiquitin Ligase Adaptor". Cell 147 (5): 1104–1117. doi:10.1016/j.cell.2011.09.054. ISSN 0092-8674. PMID 22118465. http://dx.doi.org/10.1016/j.cell.2011.09.054. 
  39. 39.0 39.1 Baile, Matthew G.; Guiney, Evan L.; Sanford, Ethan J.; MacGurn, Jason A.; Smolka, Marcus B.; Emr, Scott D. (2019-12-01). Riezman, Howard. ed. "Activity of a ubiquitin ligase adaptor is regulated by disordered insertions in its arrestin domain" (in en). Molecular Biology of the Cell 30 (25): 3057–3072. doi:10.1091/mbc.E19-08-0451. ISSN 1059-1524. PMID 31618110. 
  40. 40.0 40.1 40.2 40.3 40.4 40.5 Becuwe, Michel; Léon, Sébastien (2014-11-07). "Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5" (in en). eLife 3: e03307. doi:10.7554/eLife.03307. ISSN 2050-084X. PMID 25380227. PMC 4244573. https://elifesciences.org/articles/03307. 
  41. Helliwell, Stephen B.; Losko, Sascha; Kaiser, Chris A. (2001-05-07). "Components of a Ubiquitin Ligase Complex Specify Polyubiquitination and Intracellular Trafficking of the General Amino Acid Permease". Journal of Cell Biology 153 (4): 649–662. doi:10.1083/jcb.153.4.649. ISSN 0021-9525. PMID 11352928. PMC 2192387. http://dx.doi.org/10.1083/jcb.153.4.649. 
  42. Martínez-Márquez, Jorge Y.; Duncan, Mara C. (2018-11-07). "Investigation of Ldb19/Art1 localization and function at the late Golgi". PLOS ONE 13 (11): e0206944. doi:10.1371/journal.pone.0206944. ISSN 1932-6203. PMID 30403748. Bibcode2018PLoSO..1306944M. 
  43. 43.0 43.1 43.2 Hovsepian, Junie; Albanèse, Véronique; Becuwe, Michel; Ivashov, Vasyl; Teis, David; Léon, Sébastien (May 2018). "The yeast arrestin-related protein Bul1 is a novel actor of glucose-induced endocytosis". Molecular Biology of the Cell 29 (9): 1012–1020. doi:10.1091/mbc.e17-07-0466. ISSN 1059-1524. PMID 29514933. PMC 5921569. http://dx.doi.org/10.1091/mbc.e17-07-0466. 
  44. Nikko, Elina; Pelham, Hugh R. B. (December 2009). "Arrestin-Mediated Endocytosis of Yeast Plasma Membrane Transporters". Traffic 10 (12): 1856–1867. doi:10.1111/j.1600-0854.2009.00990.x. ISSN 1398-9219. PMID 19912579. PMC 2810449. http://dx.doi.org/10.1111/j.1600-0854.2009.00990.x. 
  45. 45.0 45.1 45.2 Llopis-Torregrosa, Vicent; Ferri-Blázquez, Alba; Adam-Artigues, Anna; Deffontaines, Emilie; van Heusden, G.Paul H.; Yenush, Lynne (July 2016). "Regulation of the Yeast Hxt6 Hexose Transporter by the Rod1 α-Arrestin, the Snf1 Protein Kinase, and the Bmh2 14-3-3 Protein". Journal of Biological Chemistry 291 (29): 14973–14985. doi:10.1074/jbc.m116.733923. ISSN 0021-9258. PMID 27261460. 
  46. 46.0 46.1 Ho, Hsuan-Chung; MacGurn, Jason A.; Emr, Scott D. (May 2017). "Deubiquitinating enzymes Ubp2 and Ubp15 regulate endocytosis by limiting ubiquitination and degradation of ARTs". Molecular Biology of the Cell 28 (9): 1271–1283. doi:10.1091/mbc.e17-01-0008. ISSN 1059-1524. PMID 28298493. PMC 5415021. http://dx.doi.org/10.1091/mbc.e17-01-0008. 
  47. Jones, Charles B.; Ott, Elizabeth M.; Keener, Justin M.; Curtiss, Matt; Sandrin, Virginie; Babst, Markus (2012-01-08). "Regulation of Membrane Protein Degradation by Starvation-Response Pathways". Traffic 13 (3): 468–482. doi:10.1111/j.1600-0854.2011.01314.x. ISSN 1398-9219. PMID 22118530. PMC 3276697. http://dx.doi.org/10.1111/j.1600-0854.2011.01314.x. 
  48. Batista, Thiago M.; Dagdeviren, Sezin; Carroll, Shannon H.; Cai, Weikang; Melnik, Veronika Y.; Noh, Hye Lim; Saengnipanthkul, Suchaorn; Kim, Jason K. et al. (2020-03-24). "Arrestin domain-containing 3 (Arrdc3) modulates insulin action and glucose metabolism in liver" (in en). Proceedings of the National Academy of Sciences 117 (12): 6733–6740. doi:10.1073/pnas.1922370117. ISSN 0027-8424. PMID 32156724. Bibcode2020PNAS..117.6733B. 
  49. Patwari, Parth; Emilsson, Valur; Schadt, Eric E.; Chutkow, William A.; Lee, Samuel; Marsili, Alessandro; Zhang, Yongzhao; Dobrin, Radu et al. (November 2011). "The Arrestin Domain-Containing 3 Protein Regulates Body Mass and Energy Expenditure" (in en). Cell Metabolism 14 (5): 671–683. doi:10.1016/j.cmet.2011.08.011. PMID 21982743. 
  50. 50.0 50.1 50.2 Wu, Ning; Zheng, Bin; Shaywitz, Adam; Dagon, Yossi; Tower, Christine; Bellinger, Gary; Shen, Che-Hung; Wen, Jennifer et al. (March 2013). "AMPK-Dependent Degradation of TXNIP upon Energy Stress Leads to Enhanced Glucose Uptake via GLUT1" (in en). Molecular Cell 49 (6): 1167–1175. doi:10.1016/j.molcel.2013.01.035. PMID 23453806. 
  51. Waldhart, Althea N.; Dykstra, Holly; Peck, Anderson S.; Boguslawski, Elissa A.; Madaj, Zachary B.; Wen, Jennifer; Veldkamp, Kelsey; Hollowell, Matthew et al. (June 2017). "Phosphorylation of TXNIP by AKT Mediates Acute Influx of Glucose in Response to Insulin" (in en). Cell Reports 19 (10): 2005–2013. doi:10.1016/j.celrep.2017.05.041. PMID 28591573. 
  52. Dykstra, Holly; LaRose, Cassi; Fisk, Chelsea; Waldhart, Althea; Meng, Xing; Zhao, Gongpu; Wu, Ning (December 2021). "TXNIP interaction with GLUT1 depends on PI(4,5)P2" (in en). Biochimica et Biophysica Acta (BBA) - Biomembranes 1863 (12): 183757. doi:10.1016/j.bbamem.2021.183757. PMID 34478732. 
  53. Hatakeyama, Riko; Kamiya, Masao; Takahara, Terunao; Maeda, Tatsuya (2010-12-15). "Endocytosis of the Aspartic Acid/Glutamic Acid Transporter Dip5 Is Triggered by Substrate-Dependent Recruitment of the Rsp5 Ubiquitin Ligase via the Arrestin-Like Protein Aly2". Molecular and Cellular Biology 30 (24): 5598–5607. doi:10.1128/mcb.00464-10. ISSN 0270-7306. PMID 20956561. PMC 3004268. http://dx.doi.org/10.1128/mcb.00464-10. 
  54. Kee, Younghoon; Lyon, Nancy; Huibregtse, Jon M (2005-06-02). "The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme". The EMBO Journal 24 (13): 2414–2424. doi:10.1038/sj.emboj.7600710. ISSN 0261-4189. PMID 15933713. PMC 1173151. http://dx.doi.org/10.1038/sj.emboj.7600710. 
  55. Herrador, Antonio; Herranz, Silvia; Lara, David; Vincent, Olivier (2010-02-15). "Recruitment of the ESCRT Machinery to a Putative Seven-Transmembrane-Domain Receptor Is Mediated by an Arrestin-Related Protein" (in en). Molecular and Cellular Biology 30 (4): 897–907. doi:10.1128/MCB.00132-09. ISSN 0270-7306. PMID 20028738. 
  56. Herrador, Antonio; Léon, Sébastien; Haguenauer-Tsapis, Rosine; Vincent, Olivier (June 2013). "A Mechanism for Protein Monoubiquitination Dependent on a trans-Acting Ubiquitin-binding Domain" (in en). Journal of Biological Chemistry 288 (23): 16206–16211. doi:10.1074/jbc.C113.452250. PMID 23645667. 
  57. Kakiuchi, Kazue; Yamauchi, Yoshio; Taoka, Masato; Iwago, Maki; Fujita, Tomoko; Ito, Takashi; Song, Si-Young; Sakai, Akira et al. (2007-07-01). "Proteomic Analysis of in Vivo 14-3-3 Interactions in the Yeast Saccharomyces cerevisiae" (in en). Biochemistry 46 (26): 7781–7792. doi:10.1021/bi700501t. ISSN 0006-2960. PMID 17559233. https://pubs.acs.org/doi/10.1021/bi700501t. 
  58. Lee, Sora; Ho, Hsuan-Chung; Tumolo, Jessica M.; Hsu, Pi-Chiang; MacGurn, Jason A. (2019-03-04). "Methionine triggers Ppz-mediated dephosphorylation of Art1 to promote cargo-specific endocytosis" (in en). Journal of Cell Biology 218 (3): 977–992. doi:10.1083/jcb.201712144. ISSN 0021-9525. PMID 30610170. PMC 6400557. https://rupress.org/jcb/article/218/3/977/120815/Methionine-triggers-Ppzmediated-dephosphorylation. 
  59. Galan, Jean Marc; Moreau, Violaine; Andre, Bruno; Volland, Christiane; Haguenauer-Tsapis, Rosine (May 1996). "Ubiquitination Mediated by the Npi1p/Rsp5p Ubiquitin-protein Ligase Is Required for Endocytosis of the Yeast Uracil Permease". Journal of Biological Chemistry 271 (18): 10946–10952. doi:10.1074/jbc.271.18.10946. ISSN 0021-9258. PMID 8631913. 
  60. Schmidt, Anja; Beck, Thomas; Koller, Antonius; Kunz, Jeannette; Hall, Michael N. (1998-12-01). "The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease". The EMBO Journal 17 (23): 6924–6931. doi:10.1093/emboj/17.23.6924. ISSN 0261-4189. PMID 9843498. PMC 1171040. http://dx.doi.org/10.1093/emboj/17.23.6924. 
  61. Gournas, Christos; Gkionis, Stelios; Carquin, Mélanie; Twyffels, Laure; Tyteca, Donatienne; André, Bruno (2018-03-20). "Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains". Proceedings of the National Academy of Sciences 115 (14): E3145–E3154. doi:10.1073/pnas.1719462115. ISSN 0027-8424. PMID 29559531. Bibcode2018PNAS..115E3145G. 
  62. Gournas, Christos; Saliba, Elie; Krammer, Eva-Maria; Barthelemy, Céline; Prévost, Martine; André, Bruno (2017-10-15). "Transition of yeast Can1 transporter to the inward-facing state unveils an α-arrestin target sequence promoting its ubiquitylation and endocytosis". Molecular Biology of the Cell 28 (21): 2819–2832. doi:10.1091/mbc.e17-02-0104. ISSN 1059-1524. PMID 28814503. PMC 5638585. http://dx.doi.org/10.1091/mbc.e17-02-0104. 
  63. Fujita, Shoki; Sato, Daichi; Kasai, Hirokazu; Ohashi, Masataka; Tsukue, Shintaro; Takekoshi, Yutaro; Gomi, Katsuya; Shintani, Takahiro (July 2018). "The C-terminal region of the yeast monocarboxylate transporter Jen1 acts as a glucose signal–responding degron recognized by the α-arrestin Rod1" (in en). Journal of Biological Chemistry 293 (28): 10926–10936. doi:10.1074/jbc.RA117.001062. PMID 29789424.