Biology:Dorsal attention network

From HandWiki
Short description: Large-scale brain network involved in voluntary orienting of attention
Dorsal and ventral attention systems
Interaction between dorsal and ventral attention networks enables dynamic control of attention in relation to top-down goals and bottom-up sensory stimulation.[1]

The dorsal attention network (DAN), also known anatomically as the dorsal frontoparietal network (D-FPN), is a large-scale brain network of the human brain that is primarily composed of the intraparietal sulcus (IPS) and frontal eye fields (FEF).[2][3] It is named and most known for its role in voluntary orienting of visuospatial attention.[4][5]

As the IPS and FEF were noticed to be activated during many attention-demanding tasks, this network was sometimes referred to as the task-positive network to contrast it against the task-negative network, or default mode network.[6] However, this dichotomy is now considered misleading, because the default mode network can be active in certain cognitive tasks.[7]

Anatomy

The core regions of the DAN are the IPS and FEF of each hemisphere.[8] Other regions of the network may include the middle temporal region (MT+),[6] superior parietal lobule (SPL), supplementary eye field (SEF),[9] and ventral premotor cortex.[10]

More recent works indicate that the cerebellum may participate in this network as well.[11][12] Less studied regions include the right dorsolateral prefrontal cortex and superior colliculus.[10]

Function

The DAN is most prominently involved in goal-directed, voluntary control of visuospatial attention.[4][5] Corbetta et al., who first defined and named the DAN in the early-to-mid 2000s,[5][13] suggest that the network is involved in general top-down selection of stimuli and responses, including other modalities (e.g. auditory, tactile).[14] However, evidence that the full DAN is involved in auditory top-down attention has been questioned, as tests that make said claims incorporated both auditory and visual stimuli.[15]

The dorsal attention network dynamically interacts with the ventral attention network (or salience network) according to task demands.[1] The inferior frontal junction configures this interaction between the two networks during task switches or attention shifts.[16]

Clinical significance

Reduced connectivity within the dorsal and ventral attention networks has been linked to higher levels of attention deficit hyperactivity disorder symptoms.[17][18] Similarly, reduced connectivity between the DAN and the frontoparietal network is associated with major depressive disorder.[19] On the other hand, overactivation of the DAN has been observed in patients with schizophrenia.[20]

Nomenclature

There are several variations of this network's name in neuroscience literature, such as the dorsal attention system,[1] dorsal frontoparietal attention network,[9] and frontoparietal attention network.[21] Until the discovery of other networks, such as the frontoparietal control network, the term task-positive network referred to the DAN.[22] The term task-positive networks is still sometimes used to refer to all non-default-mode networks.[23]

In 2019, Uddin et al. proposed that dorsal frontoparietal network (D-FPN) be used as a standard anatomical name for this network.[10]

References

  1. 1.0 1.1 1.2 Vossel, S; Geng, JJ; Fink, GR (April 2014). "Dorsal and ventral attention systems: distinct neural circuits but collaborative roles.". The Neuroscientist 20 (2): 150–9. doi:10.1177/1073858413494269. PMID 23835449. 
  2. Fox, M.D.; Corbetta, M.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E. (2006). "Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems". PNAS 103 (26): 10046–10051. doi:10.1073/pnas.0604187103. PMID 16788060. Bibcode2006PNAS..10310046F. 
  3. Farrant, Kristafor; Uddin, Lucina Q. (2015-02-12). "Asymmetric development of dorsal and ventral attention networks in the human brain". Developmental Cognitive Neuroscience 12: 165–174. doi:10.1016/j.dcn.2015.02.001. ISSN 1878-9293. PMID 25797238. 
  4. 4.0 4.1 Kincade, J. M.; Abrams, R. A.; Astafiev, S. V.; Shulman, G. I.; Corbetta, M. (2005). "An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention". Journal of Neuroscience 25 (18): 4593–4604. doi:10.1523/jneurosci.0236-05.2005. PMID 15872107. 
  5. 5.0 5.1 5.2 Corbetta, M; Shulman, GL (March 2002). "Control of goal-directed and stimulus-driven attention in the brain.". Nature Reviews. Neuroscience 3 (3): 201–15. doi:10.1038/nrn755. PMID 11994752. 
  6. 6.0 6.1 Fox, M. D.; Snyder, A. Z.; Vincent, J. L.; Corbetta, M.; Van Essen, D. C.; Raichle, M. E. (2005). "From The Cover: The human brain is intrinsically organized into dynamic, anticorrelated functional networks". Proceedings of the National Academy of Sciences 102 (27): 9673–9678. doi:10.1073/pnas.0504136102. ISSN 0027-8424. PMID 15976020. 
  7. Spreng, R. Nathan (2012-01-01). "The fallacy of a "task-negative" network". Frontiers in Psychology 3: 145. doi:10.3389/fpsyg.2012.00145. ISSN 1664-1078. PMID 22593750. 
  8. Astafiev, S. V.; Shulman, G. I.; Stanley, C. M.; Snyder, A. Z.; Van Essen, D. C.; Corbetta, M. (2003). "Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing". Journal of Neuroscience 23 (11): 4689–4699. doi:10.1523/JNEUROSCI.23-11-04689.2003. PMID 12805308. 
  9. 9.0 9.1 Szczepanski, SM; Pinsk, MA; Douglas, MM; Kastner, S; Saalmann, YB (2013-09-24). "Functional and structural architecture of the human dorsal frontoparietal attention network.". Proceedings of the National Academy of Sciences of the United States of America 110 (39): 15806–11. doi:10.1073/pnas.1313903110. PMID 24019489. Bibcode2013PNAS..11015806S. 
  10. 10.0 10.1 10.2 Uddin, Lucina Q.; Yeo, B. T. Thomas; Spreng, R. Nathan (2019-11-01). "Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks" (in en). Brain Topography 32 (6): 926–942. doi:10.1007/s10548-019-00744-6. ISSN 1573-6792. PMID 31707621. 
  11. Somers, David C.; Halko, Mark A.; Levin, Emily J.; Osher, David E.; Tobyne, Sean M.; Brissenden, James A. (2018-11-05). "Topographic Cortico-cerebellar Networks Revealed by Visual Attention and Working Memory" (in English). Current Biology 28 (21): 3364–3372.e5. doi:10.1016/j.cub.2018.08.059. ISSN 0960-9822. PMID 30344119. 
  12. Somers, David C.; Halko, Mark A.; Osher, David E.; Levin, Emily J.; Brissenden, James A. (2016-06-01). "Functional Evidence for a Cerebellar Node of the Dorsal Attention Network" (in en). Journal of Neuroscience 36 (22): 6083–6096. doi:10.1523/JNEUROSCI.0344-16.2016. ISSN 0270-6474. PMID 27251628. 
  13. Corbetta, Maurizio; Kincade, Michelle J.; Lewis, Chris; Snyder, Abraham Z.; Sapir, Ayelet (November 2005). "Neural basis and recovery of spatial attention deficits in spatial neglect" (in en). Nature Neuroscience 8 (11): 1603–1610. doi:10.1038/nn1574. ISSN 1546-1726. PMID 16234807. https://www.nature.com/articles/nn1574. 
  14. Corbetta, M; Patel, G; Shulman, GL (2008-05-08). "The reorienting system of the human brain: from environment to theory of mind.". Neuron 58 (3): 306–24. doi:10.1016/j.neuron.2008.04.017. PMID 18466742. 
  15. Braga, RM; Wilson, LR; Sharp, DJ; Wise, RJ; Leech, R (2013-07-01). "Separable networks for top-down attention to auditory non-spatial and visuospatial modalities.". NeuroImage 74: 77–86. doi:10.1016/j.neuroimage.2013.02.023. PMID 23435206. 
  16. Tamber-Rosenau, BJ; Asplund, CL; Marois, R (2018-11-01). "Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control.". Journal of Neurophysiology 120 (5): 2498–2512. doi:10.1152/jn.00506.2018. PMID 30156458. 
  17. Castellanos, FX; Aoki, Y (May 2016). "Intrinsic Functional Connectivity in Attention-Deficit/Hyperactivity Disorder: A Science in Development.". Biological Psychiatry. Cognitive Neuroscience and Neuroimaging 1 (3): 253–261. doi:10.1016/j.bpsc.2016.03.004. PMID 27713929. 
  18. McCarthy, H; Skokauskas, N; Mulligan, A; Donohoe, G; Mullins, D; Kelly, J; Johnson, K; Fagan, A et al. (December 2013). "Attention network hypoconnectivity with default and affective network hyperconnectivity in adults diagnosed with attention-deficit/hyperactivity disorder in childhood.". JAMA Psychiatry 70 (12): 1329–37. doi:10.1001/jamapsychiatry.2013.2174. PMID 24132732. 
  19. Kaiser, RH; Andrews-Hanna, JR; Wager, TD; Pizzagalli, DA (June 2015). "Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-analysis of Resting-State Functional Connectivity.". JAMA Psychiatry 72 (6): 603–11. doi:10.1001/jamapsychiatry.2015.0071. PMID 25785575. 
  20. Jimenez, AM; Lee, J; Wynn, JK; Cohen, MS; Engel, SA; Glahn, DC; Nuechterlein, KH; Reavis, EA et al. (2016). "Abnormal Ventral and Dorsal Attention Network Activity during Single and Dual Target Detection in Schizophrenia.". Frontiers in Psychology 7: 323. doi:10.3389/fpsyg.2016.00323. PMID 27014135. 
  21. Ptak, R (October 2012). "The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment.". The Neuroscientist 18 (5): 502–15. doi:10.1177/1073858411409051. PMID 21636849. 
  22. Vincent, JL; Kahn, I; Snyder, AZ; Raichle, ME; Buckner, RL (December 2008). "Evidence for a frontoparietal control system revealed by intrinsic functional connectivity.". Journal of Neurophysiology 100 (6): 3328–42. doi:10.1152/jn.90355.2008. PMID 18799601. 
  23. Mills, BD; Miranda-Dominguez, O; Mills, KL; Earl, E; Cordova, M; Painter, J; Karalunas, SL; Nigg, JT et al. (2018). "ADHD and attentional control: Impaired segregation of task positive and task negative brain networks.". Network Neuroscience (Cambridge, Mass.) 2 (2): 200–217. doi:10.1162/netn_a_00034. PMID 30215033.