Biology:Frontoparietal network
The frontoparietal network (FPN), generally also known as the central executive network (CEN) or, more specifically, the lateral frontoparietal network (L-FPN) (see Nomenclature), is a large-scale brain network primarily composed of the dorsolateral prefrontal cortex and posterior parietal cortex,[4] around the intraparietal sulcus.[5] It is involved in sustained attention, complex problem-solving and working memory.[1]
The FPN is one of three networks in the so-called triple-network model, along with the salience network and the default mode network (DMN).[6] The salience network facilitates switching between the FPN and DMN.[1][2]
Anatomy
The FPN is primarily composed of the rostral lateral and dorsolateral prefrontal cortex (especially the middle frontal gyrus) and the anterior inferior parietal lobule. Additional regions include the middle cingulate gyrus and potentially the dorsal precuneus, posterior inferior temporal lobe, dorsomedial thalamus and the head of the caudate nucleus.[7]
Function
The FPN is involved in executive function and goal-oriented, cognitively demanding tasks.[7] It is crucial for rule-based problem solving, actively maintaining and manipulating information in working memory and making decisions in the context of goal-directed behaviour.[1] Based on current cognitive demands, the FPN flexibly divides into two subsystems that connect to other networks: the default mode network for introspective processes and the dorsal attention network for perceptual attention.[8]
Clinical significance
Disruption of the nodes of the FPN has been found in virtually every psychiatric and neurological disorder, from autism, schizophrenia and depression to frontotemporal dementia and Alzheimer's disease.[1]
Nomenclature
The term central executive network (CEN) is generally equivalent to the frontoparietal network in literature,[9][10][11] distinguishing it from the dorsal attention network (DAN), with which it has several similarities,[5] though sometimes it has been used to include the DAN.[11]
The FPN has fewer similarities with the salience network (which has also been equated with the cingulo-opercular network or ventral attention network[7]). Regardless, it has sometimes been grouped together with either the DAN or the salience network (usually the latter[12]) under the name executive control network (ECN).[5] The term frontoparietal control network (FPCN) has also been used, generally also for a grouping of the FPN and the salience network.[5][12]
Other names for the FPN have included the multiple-demand system, extrinsic mode network, domain-general system and cognitive control network.[7]
In 2019, Uddin et al. proposed that lateral frontoparietal network (L-FPN) be used as the standard name for this network.[7]
See also
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Menon, Vinod (2011-10-01). "Large-scale brain networks and psychopathology: a unifying triple network model" (in en). Trends in Cognitive Sciences 15 (10): 483–506. doi:10.1016/j.tics.2011.08.003. ISSN 1364-6613. PMID 21908230. http://www.sciencedirect.com/science/article/pii/S1364661311001719.
- ↑ 2.0 2.1 Sridharan, D.; Levitin, D. J.; Menon, V. (22 August 2008). "A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks". Proceedings of the National Academy of Sciences 105 (34): 12569–12574. doi:10.1073/pnas.0800005105. PMID 18723676. Bibcode: 2008PNAS..10512569S.
- ↑ Nekovarova, Tereza; Fajnerova, Iveta; Horacek, Jiri; Spaniel, Filip (30 May 2014). "Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory". Frontiers in Behavioral Neuroscience 8: 171. doi:10.3389/fnbeh.2014.00171. PMID 24910597.
- ↑ Gong, Diankun; He, Hui; Ma, Weiyi; Liu, Dongbo; Huang, Mengting; Dong, Li; Gong, Jinnan; Li, Jianfu et al. (2016-01-14). "Functional Integration between Salience and Central Executive Networks: A Role for Action Video Game Experience" (in en). Neural Plasticity 2016: 1–9. doi:10.1155/2016/9803165. PMID 26885408.
- ↑ 5.0 5.1 5.2 5.3 Gratton, Caterina; Sun, Haoxin; Petersen, Steven E. (2018). "Control networks and hubs" (in en). Psychophysiology 55 (3): e13032. doi:10.1111/psyp.13032. ISSN 1469-8986. PMID 29193146.
- ↑ van Oort, J.; Tendolkar, I.; Hermans, E. J.; Mulders, P. C.; Beckmann, C. F.; Schene, A. H.; Fernández, G.; van Eijndhoven, P. F. (2017-12-01). "How the brain connects in response to acute stress: A review at the human brain systems level" (in en). Neuroscience & Biobehavioral Reviews 83: 281–297. doi:10.1016/j.neubiorev.2017.10.015. ISSN 0149-7634. PMID 29074385. http://www.sciencedirect.com/science/article/pii/S0149763417303275.
- ↑ 7.0 7.1 7.2 7.3 7.4 Uddin, Lucina Q.; Yeo, B. T. Thomas; Spreng, R. Nathan (2019-11-01). "Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks" (in en). Brain Topography 32 (6): 926–942. doi:10.1007/s10548-019-00744-6. ISSN 1573-6792. PMID 31707621.
- ↑ Dixon, ML; De La Vega, A; Mills, C; Andrews-Hanna, J; Spreng, RN; Cole, MW; Christoff, K (2018-02-13). "Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks.". Proceedings of the National Academy of Sciences of the United States of America 115 (7): E1598–E1607. doi:10.1073/pnas.1715766115. PMID 29382744.
- ↑ Philippi, Carissa L.; Pujara, Maia S.; Motzkin, Julian C.; Newman, Joseph; Kiehl, Kent A.; Koenigs, Michael (2015-04-15). "Altered Resting-State Functional Connectivity in Cortical Networks in Psychopathy" (in en). Journal of Neuroscience 35 (15): 6068–6078. doi:10.1523/JNEUROSCI.5010-14.2015. ISSN 0270-6474. PMID 25878280.
- ↑ Brodal, Per (2016) (in en). The Central Nervous System. Oxford University Press. pp. 578. ISBN 978-0-19-022895-8. https://books.google.com/books?id=Z81aCwAAQBAJ&pg=PA578.
- ↑ 11.0 11.1 Littow, Harri; Huossa, Ville; Karjalainen, Sami; Jääskeläinen, Erika; Haapea, Marianne; Miettunen, Jouko; Tervonen, Osmo; Isohanni, Matti et al. (2015). "Aberrant Functional Connectivity in the Default Mode and Central Executive Networks in Subjects with Schizophrenia – A Whole-Brain Resting-State ICA Study" (in en). Frontiers in Psychiatry 6: 26. doi:10.3389/fpsyt.2015.00026. ISSN 1664-0640. PMID 25767449.
- ↑ 12.0 12.1 Spreng, R. Nathan; Sepulcre, Jorge; Turner, Gary R.; Stevens, W. Dale; Schacter, Daniel L. (January 2013). "Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain". Journal of Cognitive Neuroscience 25 (1): 74–86. doi:10.1162/jocn_a_00281. ISSN 0898-929X. PMID 22905821.
Original source: https://en.wikipedia.org/wiki/Frontoparietal network.
Read more |