Biology:Boreoeutheria
Boreoeutheria | |
---|---|
From top to right: European hedgehog, Lyle's flying fox, Siberian tiger, Indian pangolin, red deer and white rhino. Representing the orders: Eulipotyphla, Chiroptera, Carnivora, Pholidota, Artiodactyla and Perissodactyla, comprising Laurasiatheria. | |
From top to left: Sunda colugo, Desmarest's hutia, lar gibbon, European hare, brown rat, common treeshrew, ring-tailed lemur, and human playing with a rabbit. Representing the orders: Dermoptera, Rodentia, Primates, Lagomorpha, and Scandentia, comprising Euarchontoglires. | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Class: | Mammalia |
Clade: | Eutheria |
Infraclass: | Placentalia |
Magnorder: | Boreoeutheria Springer & de Jong, 2001;[1] Murphy et al., 2001[2] |
Superorders | |
Synonyms | |
Boreoeutheria (/boʊˌriːoʊjuːˈθɛriə/, "northern true beasts") is a magnorder of placental mammals that groups together superorders Euarchontoglires and Laurasiatheria.[1][2][5] With a few exceptions,[lower-alpha 1] male animals in the clade have a scrotum, an ancestral feature of the clade.[6][7] The sub-clade Scrotifera was named after this feature.[8]
Etymology
The name of this magnorder comes from Ancient Greek words:
- Βορέας (Boreas) meaning 'north wind' or 'the North',
- εὐ- (eu-) meaning 'good', 'right', or 'true',
- and θηρίον (thēríon) meaning 'beast'.
Boreoeutherian ancestor
The majority of earliest known fossils belonging to this group date to about 66 million years ago, shortly after the K-Pg extinction event, though molecular data suggest they may have originated earlier, during the Cretaceous period.[9][10] This is further supported with fossils of Altacreodus magnus and two species from genus Protungulatum dated about 70.6 million years ago.
The common ancestor of Boreoeutheria lived between 107 and 90 million years ago.[9] The boreoeutherian ancestor gave rise to species as diverse as giraffes, dogs, mice, bats, whales, and humans. The concept of a boreoeutherian ancestor was first proposed in 2004 in the journal Genome Research.[11][12] The paper's authors claimed that the genome sequence of the boreoeutherian ancestor could be computationally predicted with 98% accuracy, but would "take a few years and a lot of money". It is estimated to contain three billion base pairs.[11]
Classification and phylogeny
Taxonomy
- Magnorder: Boreoeutheria (Springer & de Jong, 2001)
- Superorder: Euarchontoglires (Murphy, 2001)
- Superorder: Laurasiatheria (Waddell, 1999)
- Incertae sedis:
- Genus: †Veratalpa (Ameghino, 1905)
Phylogeny
The phylogenetic relationships of magnorder Boreoeutheria are shown in the following cladogram, reconstructed from mitochondrial and nuclear DNA and protein characters, as well as the fossil record.[4][9][10][13][14][15][16]
See also
Notes
References
- ↑ 1.0 1.1 "Which mammalian supertree to bark up?". Science 291 (5509): 1709–1711. 2001. doi:10.1126/science.1059434. PMID 11253193.
- ↑ 2.0 2.1 "Resolution of the early placental mammal radiation using Bayesian phylogenetics". Science 294 (5550): 2348–2351. December 2001. doi:10.1126/science.1067179. PMID 11743200. Bibcode: 2001Sci...294.2348M.
- ↑ Arnason U., Adegoke J. A., Gullberg A., Harley E. H., Janke A., Kullberg M. (2008.) "Mitogenomic relationships of placental mammals and molecular estimates of their divergences." Gene.; 421(1-2):37–51
- ↑ 4.0 4.1 Waddell, Peter J.; Kishino, Hirohisa; Ota, Rissa (2001). "A phylogenetic foundation for comparative mammalian genomics". Genome Informatics 12: 141–154. PMID 11791233. http://www.jsbi.org/pdfs/journal1/GIW01/GIW01F15.html. Retrieved 2021-08-09.
- ↑ "Molecular evidence for the major clades of placental mammals". Journal of Mammalian Evolution 8 (4): 239–277. 2001. doi:10.1023/A:1014446915393.
- ↑ Mills, D. S.; Marchant-Forde, Jeremy N. (2010). The Encyclopedia of Applied Animal Behaviour and Welfare. CABI. pp. 293. ISBN 978-0-85199-724-7. https://books.google.com/books?id=vrueZDfPUzoC&pg=PA293. Retrieved 20 June 2019.
- ↑ Drew, Liam (8 July 2013). "Why are testicles kept in a vulnerable dangling sac?". http://www.slate.com/articles/health_and_science/science/2013/07/are_testicles_external_for_cooling_galloping_display_or_something_else.html. "Between these branches, however, is where it gets interesting, for there are numerous groups, our descended but a-scrotal cousins, whose testes drop down away from the kidneys but don't exit the abdomen. Almost certainly, these animals evolved from ancestors whose testes were external, which means at some point they backtracked ... , evolving anew gonads inside the abdomen. They are a ragtag bunch including hedgehogs, moles, rhinos and tapirs, hippopotamuses, dolphins and whales, some seals and walruses, and scaly anteaters."
- ↑ Waddell (1999). "Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid-invariant sites-LogDet plus site stripping, to detect internal conflicts in the data, with special reference to the positions of hedgehog, armadillo, and elephant". Systematic Biology 48 (1): 31–53. doi:10.1080/106351599260427. PMID 12078643. "The name comes from the word scrotum a pouch in which the testes permanently reside in the adult male. All members of the group have a postpenile scrotum, often prominently displayed, except for some aquatic forms and pangolins (which have the testes just below the skin). It appears to be an ancestral character for this group, yet other orders generally lack this as an ancestral feature, with the probable exception of Primates.".
- ↑ 9.0 9.1 9.2 Zhou, X.; Xu, S.; Xu, J.; Chen, B.; Zhou, K.; Yang, G. (2012). "Phylogenomic Analysis Resolves the Interordinal Relationships and Rapid Diversification of the Laurasiatherian Mammals". Systematic Biology 61 (1): 150–164. doi:10.1093/sysbio/syr089. ISSN 1063-5157. PMID 21900649. PMC 3243735. https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/sysbio/61/1/10.1093/sysbio/syr089/2/syr089.pdf?Expires=1489745013&Signature=MBmcD6S63FMy9RSKoQpvZhIf~u4lwNNnzfH1KLD7eJnMccSUuL3nAertu49T99ElRYjj2UEN01P3Qhz1II2Ee2~A7cjRx~cFFq3ny1u1R79c4V-udbtWoSdfsZwKAVDb-IB62sUyP6v3mLziPANuZOq63CUUQf4kg~MblBIMtqMs8-AVcSmIWej8WmGU8user1jO~lSs3522rTMurYZcd8JZdFWS8hZuRm~kfmwKw0LuGmHYsZnwTuojjRwzHggj7ymSS~pa-Wrp-Xn4zmqOopLn8lHUdBxctFe~KSzwC2K4dsf~K8lckTQpVnNzMxbYaz3YzHE35uWFrd2KtwzcLA__&Key-Pair-Id=APKAIUCZBIA4LVPAVW3Q.
- ↑ 10.0 10.1 O'Leary, M. A.; Bloch, J. I.; Flynn, J. J.; Gaudin, T. J.; Giallombardo, A.; Giannini, N. P.; Cirranello, A. L. (2013). "The placental mammal ancestor and the post–K-Pg radiation of placentals". Science 339 (6120): 662–667. doi:10.1126/science.1229237. PMID 23393258. Bibcode: 2013Sci...339..662O.
- ↑ 11.0 11.1 John Roach (25 Jan 2005). "Scientists recreate genome of ancient human ancestor". National Geographic. http://news.nationalgeographic.com/news/2005/01/0125_050125_genome_2.html.
- ↑ Mathieu Blanchette; Eric D. Green; Webb Miller; David Haussler (2004). "Reconstructing large regions of an ancestral mammalian genome in silico". Genome Research 14 (12): 2412–2423. doi:10.1101/gr.2800104. PMID 15574820.
- ↑ Foley, Nicole M.; Springer, Mark S.; Teeling, Emma C. (2016-07-19). "Mammal madness: Is the mammal tree of life not yet resolved?". Philosophical Transactions of the Royal Society B 371 (1699): 20150140. doi:10.1098/rstb.2015.0140. ISSN 0962-8436. PMID 27325836.
- ↑ Esselstyn, Jacob A.; Oliveros, Carl H.; Swanson, Mark T.; Faircloth, Brant C. (2017-08-26). "Investigating Difficult Nodes in the Placental Mammal Tree with Expanded Taxon Sampling and Thousands of Ultraconserved Elements" (in en). Genome Biology and Evolution 9 (9): 2308–2321. doi:10.1093/gbe/evx168. ISSN 1759-6653. PMID 28934378.
- ↑ Frank Zachos (2020.) "Mammalian Phylogenetics: A Short Overview of Recent Advances", In book: "Mammals of Europe - Past, Present, and Future" (pp.31-48)
- ↑ Xue Lv, Jingyang Hu, Yiwen Hu, Yitian Li, Dongming Xu, Oliver A. Ryder, David M. Irwin, Li Yu (2021.) "Diverse phylogenomic datasets uncover a concordant scenario of laurasiatherian interordinal relationships", Molecular Phylogenetics and Evolution, Volume 157
Additional references
- Waddell, P. J.; Kishino, H.; Ota, R. (2001). "A phylogenetic foundation for comparative mammalian genomics". Genome Inform Ser Workshop Genome Inform 12: 141–154. PMID 11791233.
- Murphy, William J. et al. (2001). "Resolution of the early placental mammal radiation using Bayesian phylogenetics". Science 294 (5550): 2348–2351. doi:10.1126/science.1067179. PMID 11743200. Bibcode: 2001Sci...294.2348M.
- Blanchette, M.; Green, E. D.; Miller, W.; Haussler, D (Dec 2004). "Reconstructing large regions of an ancestral mammalian genome in silico". Genome Research 14 (12): 2412–2423. doi:10.1101/gr.2800104. PMID 15574820.
- Kriegs; Ole, Jan; Churakov, Gennady; Kiefmann, Martin; Jordan, Ursula; Brosius, Juergen; Schmitz, Juergen (2006). "Retroposed elements as archives for the evolutionary history of placental mammals". PLOS Biology 4 (4): e91. doi:10.1371/journal.pbio.0040091. PMID 16515367.
- Ma, J.; Zhang, L.; Suh, B. B.; Raney, B. J.; Burhans, R. C.; Kent, W. J.; Blanchette, M.; Haussler, D. et al. (Dec 2006). "Reconstructing contiguous regions of an ancestral genome". Genome Research 16 (12): 1557–1565. doi:10.1101/gr.5383506. PMID 16983148.
External links
- Gross, Liza (14 March 2006). "Resolving the family tree of placental mammals". PLOS Biology 4 (4): e111. doi:10.1371/journal.pbio.0040111. PMID 20076552.
- Olson, Steve (April 2006). "Bringing back the brontosaurus". Wired. https://www.wired.com/wired/archive/14.04/bronto.html.
Wikidata ☰ Q132666 entry
Original source: https://en.wikipedia.org/wiki/Boreoeutheria.
Read more |