Biology:Langerhans cell

From HandWiki
Short description: Cell type
Langerhans cell
Dendritic cells.jpg
Section of skin showing large numbers of Langerhans cells in the epidermis. (M. ulcerans infection, S100 immunoperoxidase stain.)
Details
SystemImmune system
LocationSkin and mucosa
FunctionDendritic cell
Anatomical terms of microanatomy
The representation of Langerhans cells in the Cell Ontology. A portion of the Cell Ontology is shown with ovals corresponding to cell types defined in the ontology and arrows corresponding to relations between those cell types. Langerhans cell is represented by a yellow oval; blue arrows correspond to is_a relations, and orange arrows correspond to develops_from relations. Only a subset of Langerhans cell parent types are included in the figure.[1]

A Langerhans cell (LC) is a tissue-resident macrophage of the skin[2] once thought to be a resident dendritic cell.[3] These cells contain organelles called Birbeck granules. They are present in all layers of the epidermis and are most prominent in the stratum spinosum.[4] They also occur in the papillary dermis, particularly around blood vessels,[4] as well as in the mucosa of the mouth, foreskin, and vaginal epithelium.[5] They can be found in other tissues, such as lymph nodes, particularly in association with the condition Langerhans cell histiocytosis (LCH).

Function

In skin infections, the local Langerhans cells take up and process microbial antigens to become fully functional antigen-presenting cells.[6]

Generally, tissue-resident macrophages are involved in immune homeostasis and the uptake of apoptotic bodies. However, Langerhans cells can also take on a dendritic cell-like phenotype and migrate to lymph nodes to interact with naive T-cells.

Langerhans cells derive from primitive erythro-myeloid progenitors that arise in the yolk sac outside the embryo in the first trimester of pregnancy, and under normal circumstances persist throughout life, being replenished by local proliferation as necessary. If the skin becomes severely inflamed, perhaps because of infection, blood monocytes are recruited to the affected region and differentiate into replacement LCs.[7]

Langerin is a protein found in Langerhans cells,[8] and dendritic cells.[9]

LCs contain a large amount of cannabinoid receptor type 2 (CB2), that by activation by agonists, attenuate both the recruitment of eosinophils and ear swelling in chronic contact dermatitis induced by repeated challenge.[10]

Clinical significance

Langerhans cell histiocytosis

In the rare disease Langerhans cell histiocytosis (LCH), an excess of cells similar to these cells are produced. However LCH cells stain positive to CD14 which is a monocyte marker and shows a different, hematopoietic origin for the disorder.[11] LCH can cause damage to skin, bone and other organs.[citation needed]

HIV

Langerhans cells may be initial cellular targets in the sexual transmission of HIV,[12] and may be a target, reservoir, and vector of dissemination.[13] Langerhans cells have been observed in foreskin, vaginal, and oral mucosa of humans; the lower concentrations in oral mucosa suggest that it is not a likely source of HIV infection relative to foreskin and vaginal mucosa.[5]

Human papillomavirus

High-risk human papillomaviruses (HPV) are sexually transmitted viruses causally associated with several cancers including cervical, vaginal, anal, and head and neck cancers that cause significant morbidity and mortality worldwide.[14][15][16][17] Over half of all cervical cancer cases are associated with HPV16, the most common of the cancer-causing high-risk genotypes.[18] During its natural life cycle, HPV16 infects the basal cells of the epithelium and interacts with Langerhans cells within the epithelial layer,[19] which are responsible for initiating immune responses against epithelial invading pathogens.[20] However, HPV does not activate Langerhans cells in vitro, and this may represent a key mechanism by which HPV evades immune detection in vivo.[21][22][23][24] Specifically, HPV16 entry into Langerhans cells via the annexin A2/S100A10 heterotetramer results in suppressive signaling and lack of Langerhans cell-mediated immune responses.[25] This Langerhans cell-targeted immune escape mechanism seems to be conserved among different HPV genotypes enabling these viruses to remain undetected in the absence of other inflammatory events.[26] T cells exposed to these inactivated Langerhans cells are not anergic, and can be activated against HPV upon receiving the appropriate stimuli at a later time point.[27]

It was demonstrated that Langerhans cells in HPV-induced cervical lesions were spherical, lacked dendrites, and secreted the suppressive cytokine IL-10 in vivo.[28] The authors further demonstrated that the number of IL-10 secreting immunosuppressive Langerhans cells, and the amount of IL-10 produced in lesions, corresponded with the severity of histopathology and HPV viral load, providing evidence of an active immunosuppressive mechanism employed by HPV that targets Langerhans cells in vivo.[citation needed]

Dengue fever

Langerhans cells are also the initial target of the virus that causes dengue fever during its development.[29]

Declining function during ageing

During ageing the capacity of Langerhans cells to migrate declines.[30] This compromises immunity and exposes the skin to infectious diseases and cancer.[citation needed]

History

Langerhans cells are named after Paul Langerhans, a Germany physician and anatomist, who discovered the cells at the age of 21 while he was a medical student.[31] Because of their dendrite-like appearance, he mistakenly identified the cells as part of the nervous system.[32]

See also

References

  1. Masci, Anna; Arighi, Cecilia N; Diehl, Alexander D; Lieberman, Anne E; Mungall, Chris; Scheuermann, Richard H; Smith, Barry; Cowell, Lindsay G (2009). "An improved ontological representation of dendritic cells as a paradigm for all cell types". BMC Bioinformatics 10: 70. doi:10.1186/1471-2105-10-70. PMID 19243617. 
  2. Doebel, T.; Voisin, B.; Nagao, K. (2017). "MeSH Browser". Trends in Immunology 38 (11): 817–828. doi:10.1016/j.it.2017.06.008. PMID 28720426. https://pubmed.ncbi.nlm.nih.gov/28720426/. 
  3. "MeSH Browser". https://meshb.nlm.nih.gov/record/ui?ui=D007801. 
  4. 4.0 4.1 Young, Barbara; Heath, John W. (2000). Wheater's Functional Histology (4th ed.). Churchill Livingstone. p. 162. ISBN 0-443-05612-9. 
  5. 5.0 5.1 Hussain, LA; Lehner, T (1995). "Comparative investigation of Langerhans' cells and potential receptors for HIV in oral, genitourinary and rectal epithelia". Immunology 85 (3): 475–84. PMID 7558138. 
  6. "Staphylococcal phosphatidylglycerol antigens activate human T cells via CD1a". Nature Immunology 24 (1): 110–122. January 2023. doi:10.1038/s41590-022-01375-z. PMID 35265979. 
  7. Collin, Matthew; Milne, Paul (2016). "Langerhans cell origin and regulation". Current Opinion in Hematology 23 (1): 28–35. doi:10.1097/MOH.0000000000000202. PMID 26554892. 
  8. Valladeau, Jenny; Dezutter-Dambuyant, Colette; Saeland, Sem (2003). "Langerin/CD207 Sheds Light on Formation of Birbeck Granules and Their Possible Function in Langerhans Cells". Immunologic Research 28 (2): 93–107. doi:10.1385/IR:28:2:93. PMID 14610287. 
  9. Poulin, Lionel Franz; Henri, Sandrine; de Bovis, Béatrice; Devilard, Elisabeth; Kissenpfennig, Adrien; Malissen, Bernard (2007). "The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells". Journal of Experimental Medicine 204 (13): 3119–31. doi:10.1084/jem.20071724. PMID 18086861. PMC 2150992. http://pure.qub.ac.uk/portal/files/18113605/JEM1_2008.pdf. Retrieved 2018-11-04. 
  10. Oka, Saori (2006). "Involvement of the Cannabinoid CB2 Receptor and Its Endogenous Ligand 2-Arachidonoylglycerol in Oxazolone-Induced Contact Dermatitis in Mice". Journal of Immunology 177 (12): 8796–9505. doi:10.4049/jimmunol.177.12.8796. PMID 17142782. https://journals.aai.org/jimmunol/article/177/12/8796/74027/Involvement-of-the-Cannabinoid-CB2-Receptor-and. Retrieved 2023-03-26. 
  11. "NCI Summary View > Urology - Yale School of Medicine". http://medicine.yale.edu/urology/programs/info.aspx?id=CDR600550. 
  12. Kawamura, Tatsuyoshi; Kurtz, Stephen E.; Blauvelt, Andrew; Shimada, Shinji (2005). "The role of Langerhans cells in the sexual transmission of HIV". Journal of Dermatological Science 40 (3): 147–55. doi:10.1016/j.jdermsci.2005.08.009. PMID 16226431. 
  13. Dezutter-Dambuyant, C; Charbonnier, AS; Schmitt, D (December 1995). "Cellules dendritiques épithéliales et infection par HIV-1 in vivo et in vitro" (in fr). Pathologie Biologie 43 (10): 882–8. PMID 8786894. 
  14. Walboomers, J. M.; Jacobs, M. V.; Manos, M. M.; Bosch, F. X.; Kummer, J. A.; Shah, K. V.; Snijders, P. J.; Peto, J. et al. (1999-09-01). "Human papillomavirus is a necessary cause of invasive cervical cancer worldwide". The Journal of Pathology 189 (1): 12–19. doi:10.1002/(SICI)1096-9896(199909)189:1<12::AID-PATH431>3.0.CO;2-F. ISSN 0022-3417. PMID 10451482. 
  15. Arbyn, M.; Castellsagué, X.; de Sanjosé, S.; Bruni, L.; Saraiya, M.; Bray, F.; Ferlay, J. (2011-12-01). "Worldwide burden of cervical cancer in 2008". Annals of Oncology 22 (12): 2675–2686. doi:10.1093/annonc/mdr015. ISSN 1569-8041. PMID 21471563. 
  16. Haedicke, Juliane; Iftner, Thomas (2013-09-01). "Human papillomaviruses and cancer". Radiotherapy and Oncology 108 (3): 397–402. doi:10.1016/j.radonc.2013.06.004. ISSN 1879-0887. PMID 23830197. 
  17. HOFFMANN, MARKUS; QUABIUS, ELGAR S.; TRIBIUS, SILKE; HEBEBRAND, LENA; GÖRÖGH, TIBOR; HALEC, GORDANA; KAHN, TOMAS; HEDDERICH, JÜRGEN et al. (2013-05-01). "Human papillomavirus infection in head and neck cancer: The role of the secretory leukocyte protease inhibitor". Oncology Reports 29 (5): 1962–1968. doi:10.3892/or.2013.2327. ISSN 1021-335X. PMID 23467841. 
  18. Bosch, F. X.; Manos, M. M.; Muñoz, N.; Sherman, M.; Jansen, A. M.; Peto, J.; Schiffman, M. H.; Moreno, V. et al. (1995-06-07). "Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group". Journal of the National Cancer Institute 87 (11): 796–802. doi:10.1093/jnci/87.11.796. ISSN 0027-8874. PMID 7791229. 
  19. Stanley, M. A.; Pett, M. R.; Coleman, N. (2007-12-01). "HPV: from infection to cancer". Biochemical Society Transactions 35 (Pt 6): 1456–1460. doi:10.1042/BST0351456. ISSN 0300-5127. PMID 18031245. 
  20. Merad, Miriam; Ginhoux, Florent; Collin, Matthew (2008-12-01). "Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells". Nature Reviews. Immunology 8 (12): 935–947. doi:10.1038/nri2455. ISSN 1474-1741. PMID 19029989. 
  21. Fausch, Steven C.; Da Silva, Diane M.; Rudolf, Michael P.; Kast, W. Martin (2002-09-15). "Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses". Journal of Immunology 169 (6): 3242–3249. doi:10.4049/jimmunol.169.6.3242. ISSN 0022-1767. PMID 12218143. 
  22. Fausch, Steven C.; Da Silva, Diane M.; Kast, W. Martin (2003-07-01). "Differential uptake and cross-presentation of human papillomavirus virus-like particles by dendritic cells and Langerhans cells". Cancer Research 63 (13): 3478–3482. ISSN 0008-5472. PMID 12839929. 
  23. Fausch, Steven C.; Fahey, Laura M.; Da Silva, Diane M.; Kast, W. Martin (2005-06-01). "Human papillomavirus can escape immune recognition through Langerhans cell phosphoinositide 3-kinase activation". Journal of Immunology 174 (11): 7172–7178. doi:10.4049/jimmunol.174.11.7172. ISSN 0022-1767. PMID 15905561. 
  24. Fahey, Laura M.; Raff, Adam B.; Da Silva, Diane M.; Kast, W. Martin (2009-11-15). "A major role for the minor capsid protein of human papillomavirus type 16 in immune escape". Journal of Immunology 183 (10): 6151–6156. doi:10.4049/jimmunol.0902145. ISSN 1550-6606. PMID 19864613. 
  25. Woodham, Andrew W.; Raff, Adam B.; Raff, Laura M.; Da Silva, Diane M.; Yan, Lisa; Skeate, Joseph G.; Wong, Michael K.; Lin, Yvonne G. et al. (2014-05-15). "Inhibition of Langerhans cell maturation by human papillomavirus type 16: a novel role for the annexin A2 heterotetramer in immune suppression". Journal of Immunology 192 (10): 4748–4757. doi:10.4049/jimmunol.1303190. ISSN 1550-6606. PMID 24719459. 
  26. Da Silva, Diane M.; Movius, Carly A.; Raff, Adam B.; Brand, Heike E.; Skeate, Joseph G.; Wong, Michael K.; Kast, W. Martin (2014-03-01). "Suppression of Langerhans cell activation is conserved amongst human papillomavirus α and β genotypes, but not a μ genotype". Virology 452–453: 279–286. doi:10.1016/j.virol.2014.01.031. ISSN 1096-0341. PMID 24606705. 
  27. Woodham, Andrew W.; Yan, Lisa; Skeate, Joseph G.; van der Veen, Daniel; Brand, Heike H.; Wong, Michael K.; Da Silva, Diane M.; Kast, W. Martin (December 2016). "T cell ignorance is bliss: T cells are not tolerized by Langerhans cells presenting human papillomavirus antigens in the absence of costimulation". Papillomavirus Research (Amsterdam, Netherlands) 2: 21–30. doi:10.1016/j.pvr.2016.01.002. ISSN 2405-8521. PMID 27182559. 
  28. Prata, Thiago Theodoro Martins; Bonin, Camila Mareti; Ferreira, Alda Maria Teixeira; Padovani, Cacilda Tezelli Junqueira; Fernandes, Carlos Eurico Dos Santos; Machado, Ana Paula; Tozetti, Inês Aparecida (2015-09-01). "Local immunosuppression induced by high viral load of human papillomavirus: characterization of cellular phenotypes producing interleukin-10 in cervical neoplastic lesions". Immunology 146 (1): 113–121. doi:10.1111/imm.12487. ISSN 1365-2567. PMID 26059395. 
  29. Martina BE, Koraka P, Osterhaus AD (October 2009). "Dengue virus pathogenesis: an integrated view". Clinical Microbiology Reviews. 22 (4): 564–81. doi:10.1128/CMR.00035-09. PMC 2772360. PMID 19822889.
  30. Pilkington, S (2018). "Lower levels of interleukin-1β gene expression are associated with impaired Langerhans' cell migration in aged human skin". Immunology 153 (1): 60–70. doi:10.1111/imm.12810. PMID 28777886. 
  31. Langerhans, Paul (1868). "Ueber die Nerven der menschlichen Haut" (in de). Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 44 (2–3): 325–37. doi:10.1007/BF01959006. https://zenodo.org/record/2319860. 
  32. Online Mendelian Inheritance in Man (OMIM) Langerhans cell histiocytosis -604856

External links