Biology:Macro domain
| Macro | |||||||||
|---|---|---|---|---|---|---|---|---|---|
Crystal structure of the macro-domain of human core histone variant macroh2a1.1 | |||||||||
| Identifiers | |||||||||
| Symbol | Macro | ||||||||
| Pfam | PF01661 | ||||||||
| Pfam clan | CL0223 | ||||||||
| InterPro | IPR002589 | ||||||||
| SCOP2 | 1vhu / SCOPe / SUPFAM | ||||||||
| CDD | cd02749 | ||||||||
| |||||||||
In molecular biology, the Macro domain (often also written macrodomain) or A1pp domain is an ancient, evolutionary conserved structural module found in all kingdoms of life as well as some viruses.[1] Macro domains are modules of about 180 amino acids that can bind ADP-ribose, an NAD metabolite, or related ligands. Binding to ADP-ribose can be either covalent or non-covalent:[2] in certain cases it is believed to bind non-covalently,[3] while in other cases (such as Aprataxin) it appears to bind both non-covalently through a zinc finger motif, and covalently through a separate region of the protein.[4]
Function
The domain was described originally in association with the ADP-ribose 1-phosphate (Appr-1-P)-processing activity (A1pp) of the yeast YBR022W protein and called A1pp.[5] However, the domain has been renamed Macro as it is the C-terminal domain of mammalian core histone macro-H2A.[6][7] Macro domain proteins can be found in eukaryotes, in (mostly pathogenic) bacteria, in archaea and in ssRNA viruses, such as coronaviruses, Rubella and Hepatitis E viruses. In vertebrates the domain occurs in e.g. histone macroH2A, predicted poly-ADP-ribose polymerases (PARPs) and B aggressive lymphoma (BAL) protein. Zinc-containing macro domains (Zn-Macros) are primarily encountered in pathogenic microorganisms and have structurally distinct features from other macro domains, which include their function being strictly dependent on a catalytic zinc within the active site.[8][9]
ADP-ribosylation of proteins is an important post-translational modification that occurs in a variety of biological processes, including DNA repair, regulation of transcription, chromatin biology, maintenance of genomic stability, telomere dynamics,[10] cell differentiation and proliferation,[11] necrosis and apoptosis,[12] and long-term memory formation.[13] The Macro domain recognises the ADP-ribose nucleotide and in some cases poly-ADP-ribose, and is thus a high-affinity ADP-ribose-binding module found in a number of otherwise unrelated proteins.[14]
ADP-ribosylation of DNA is relatively uncommon and has only been described for a small number of toxins that include pierisin,[15] scabin[16] and DarT.[17][18] The Macro domain from the antitoxin DarG of the toxin-antitoxin system DarTG, both binds and removes the ADP-ribose modification added to DNA by the toxin DarT.[17][18] The Macro domain from human, macroH2A1.1, binds an NAD metabolite O-acetyl-ADP-ribose.[19]
| Class | Subclass | Species | Activity |
|---|---|---|---|
| MacroH2A-like | e | ADP-ribose binding | |
| MacroD-type | 'classic' | a, b, e, v | ADP-ribosyl bond hydrolysis |
| Zn-dependent | b, e | ADP-ribosyl bond hydrolysis | |
| GDAP2-like | e | ADP-ribose binding | |
| ALC1-like | b, e | ADP-ribose binding or ADP-ribosyl bond hydrolysis | |
| PARG-like | PARG_cat | e | ADP-ribosyl bond hydrolysis |
| mPARG (DUF2263) | b, e, v | ADP-ribosyl bond hydrolysis | |
| Macro2-type | e, v | ADP-ribosyl bond hydrolysis | |
| SUD-M-like | v | RNA binding | |
| DUF2362 | e | unknown | |
| a, Archaea; b, Bacteria; e, Eukarya; v, Virus | |||
Structure
The 3D structure of the Macro domain describes a mixed alpha/beta fold of a mixed beta sheet sandwiched between four helices with the ligand-binding pocket lies within the fold.[14] Several Macro domain-only domains are shorter than the structure of AF1521 and lack either the first strand or the C-terminal helix 5. Well conserved residues form a hydrophobic cleft and cluster around the AF1521-ADP-ribose binding site.[7][14][19][20]
See also
References
- ↑ Rack, Johannes Gregor Matthias; Perina, Dragutin; Ahel, Ivan (2016-06-02). "Macrodomains: Structure, Function, Evolution, and Catalytic Activities". Annual Review of Biochemistry 85 (1): 431–454. doi:10.1146/annurev-biochem-060815-014935. ISSN 0066-4154. PMID 26844395. https://www.annualreviews.org/doi/10.1146/annurev-biochem-060815-014935.
- ↑ "Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?". Microbiol. Mol. Biol. Rev. 70 (3): 789–829. September 2006. doi:10.1128/MMBR.00040-05. PMID 16959969.
- ↑ "Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites". J. Mol. Biol. 385 (1): 212–25. January 2009. doi:10.1016/j.jmb.2008.10.045. PMID 18983849.
- ↑ "Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins". Nature 451 (7174): 81–5. January 2008. doi:10.1038/nature06420. PMID 18172500. Bibcode: 2008Natur.451...81A.
- ↑ "A biochemical genomics approach for identifying genes by the activity of their products". Science 286 (5442): 1153–5. November 1999. doi:10.1126/science.286.5442.1153. PMID 10550052.
- ↑ Aravind L (May 2001). "The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation". Trends Biochem. Sci. 26 (5): 273–5. doi:10.1016/s0968-0004(01)01787-x. PMID 11343911.
- ↑ 7.0 7.1 "The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A". J. Mol. Biol. 330 (3): 503–11. July 2003. doi:10.1016/S0022-2836(03)00473-X. PMID 12842467.
- ↑ Rack, Johannes Gregor Matthias; Morra, Rosa; Barkauskaite, Eva; Kraehenbuehl, Rolf; Ariza, Antonio; Qu, Yue; Ortmayer, Mary; Leidecker, Orsolya et al. (July 2015). "Identification of a Class of Protein ADP-Ribosylating Sirtuins in Microbial Pathogens". Molecular Cell 59 (2): 309–320. doi:10.1016/j.molcel.2015.06.013. PMID 26166706.
- ↑ Ariza, Antonio; Liu, Qiang; Cowieson, Nathan; Ahel, Ivan; Filippov, Dmitri V.; Rack, Johannes Gregor Matthias (September 2024). "Evolutionary and molecular basis of ADP-ribosylation reversal by zinc-dependent macrodomains". Journal of Biological Chemistry. doi:10.1016/j.jbc.2024.107770. PMID 39270823. PMC 11490716. https://linkinghub.elsevier.com/retrieve/pii/S0021925824022713.
- ↑ "Chromatin regulation and genome maintenance by mammalian SIRT6". Trends in Biochemical Sciences 36 (1): 39–46. January 2011. doi:10.1016/j.tibs.2010.07.009. PMID 20729089.
- ↑ "The roles of PARP1 in gene control and cell differentiation". Current Opinion in Genetics & Development 20 (5): 512–8. October 2010. doi:10.1016/j.gde.2010.06.001. PMID 20591646.
- ↑ "The macro domain protein family: Structure, functions, and their potential therapeutic implications". Mutation Research 727 (3): 86–103. 2011. doi:10.1016/j.mrrev.2011.03.001. PMID 21421074. Bibcode: 2011MRRMR.727...86H.
- ↑ "Poly(ADP-ribose): novel functions for an old molecule". Nature Reviews Molecular Cell Biology 7 (7): 517–28. July 2006. doi:10.1038/nrm1963. PMID 16829982.
- ↑ 14.0 14.1 14.2 "The macro domain is an ADP-ribose binding module". EMBO J. 24 (11): 1911–20. June 2005. doi:10.1038/sj.emboj.7600664. PMID 15902274.
- ↑ Takamura-Enya, Takeji; Watanabe, Masahiko; Totsuka, Yukari; Kanazawa, Takashi; Matsushima-Hibiya, Yuko; Koyama, Kotaro; Sugimura, Takashi; Wakabayashi, Keiji (2001-10-23). "Mono(ADP-ribosyl)ation of 2′-deoxyguanosine residue in DNA by an apoptosis-inducing protein, pierisin-1, from cabbage butterfly". Proceedings of the National Academy of Sciences 98 (22): 12414–12419. doi:10.1073/pnas.221444598. ISSN 0027-8424. PMID 11592983. Bibcode: 2001PNAS...9812414T.
- ↑ Lyons, Bronwyn; Ravulapalli, Ravikiran; Lanoue, Jason; Lugo, Miguel R.; Dutta, Debajyoti; Carlin, Stephanie; Merrill, A. Rod (2016-05-20). "Scabin, a Novel DNA-acting ADP-ribosyltransferase from Streptomyces scabies". The Journal of Biological Chemistry 291 (21): 11198–11215. doi:10.1074/jbc.M115.707653. ISSN 1083-351X. PMID 27002155.
- ↑ 17.0 17.1 Jankevicius, Gytis; Ariza, Antonio; Ahel, Marijan; Ahel, Ivan (2016). "The Toxin-Antitoxin System DarTG Catalyzes Reversible ADP-Ribosylation of DNA". Molecular Cell 64 (6): 1109–1116. doi:10.1016/j.molcel.2016.11.014. PMID 27939941.
- ↑ 18.0 18.1 Schuller, Marion; Butler, Rachel E.; Ariza, Antonio; Tromans-Coia, Callum; Jankevicius, Gytis; Claridge, Tim D. W.; Kendall, Sharon L.; Goh, Shan et al. (2021-08-18). "Molecular basis for DarT ADP-ribosylation of a DNA base". Nature 596 (7873): 597–602. doi:10.1038/s41586-021-03825-4. ISSN 1476-4687. PMID 34408320. Bibcode: 2021Natur.596..597S. https://www.nature.com/articles/s41586-021-03825-4.
- ↑ 19.0 19.1 "Splicing regulates NAD metabolite binding to histone macroH2A". Nat. Struct. Mol. Biol. 12 (7): 624–5. July 2005. doi:10.1038/nsmb956. PMID 15965484.
- ↑ "Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains". J. Virol. 80 (17): 8493–502. September 2006. doi:10.1128/JVI.00713-06. PMID 16912299.
