Biology:Saccharopine dehydrogenase (NAD+, L-glutamate-forming)

From HandWiki
Jump to: navigation, search

In enzymology, a saccharopine dehydrogenase (NAD+, L-glutamate-forming) (EC 1.5.1.9) is an enzyme that catalyzes the chemical reaction

N6-(L-1,3-dicarboxypropyl)-L-lysine + NAD+ + H2O [math]\rightleftharpoons[/math] L-glutamate + 2-aminoadipate 6-semialdehyde + NADH + H+

The 3 substrates of this enzyme are N6-(L-1,3-dicarboxypropyl)-L-lysine, NAD+, and H2O, whereas its 4 products are L-glutamate, 2-aminoadipate 6-semialdehyde, NADH, and H+.

This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-NH group of donors with NAD+ or NADP+ as acceptor. The systematic name of this enzyme class is N6-(L-1,3-dicarboxypropyl)-L-lysine:NAD+ oxidoreductase (L-glutamate-forming). Other names in common use include dehydrogenase, saccharopine (nicotinamide adenine dinucleotide,, glutamate-forming), saccharopin dehydrogenase, NAD+ oxidoreductase (L-2-aminoadipic-delta-semialdehyde and, glutamate forming), aminoadipic semialdehyde synthase, saccharopine dehydrogenase (NAD+, L-glutamate-forming), 6-N-(L-1,3-dicarboxypropyl)-L-lysine:NAD+ oxidoreductase, and (L-glutamate-forming). This enzyme participates in lysine degradation.

References[edit]

  • "Conversion of lysine to saccharopine by human tissues". Biochim. Biophys. Acta 158 (1): 62–9. 1968. doi:10.1016/0304-4165(68)90072-x. PMID 4385118. 
  • "Familial hyperlysinemias. Purification and characterization of the bifunctional aminoadipic semialdehyde synthase with lysine-ketoglutarate reductase and saccharopine dehydrogenase activities". J. Biol. Chem. 259 (19): 11643–6. 1984. PMID 6434529. 


https://en.wikipedia.org/wiki/Saccharopine dehydrogenase (NAD+, L-glutamate-forming) was the original source. Read more.