Biology:Thermococcus

From HandWiki
Short description: Genus of archaea

Template:Rewritten}}

Thermococcus
Scientific classification
Domain:
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Thermococcus

Zillig 1983
Type species
Thermococcus celer
Zillig 1983
Species

See text

In taxonomy, Thermococcus is a genus of thermophilic Archaea in the family the Thermococcaceae.[1]

Members of the genus Thermococcus are typically irregularly shaped coccoid species, ranging in size from 0.6 to 2.0 μm in diameter.[2] Some species of Thermococcus are immobile, and some species have motility, using flagella as their main mode of movement.[citation needed] These flagella typically exist at a specific pole of the organism.[citation needed] This movement has been seen at room or at high temperatures, depending on the specific organism.[3] In some species, these microorganisms can aggregate and form white-gray plaques.[4] Species under Thermococcus typically thrive at temperatures between 60 and 105 °C,[5] either in the presence of black smokers (hydrothermal vents), or freshwater springs.[6] Species in this genus are strictly anaerobes,[7][8] and are thermophilic,[2][7] found in a variety depths, such as in hydrothermal vents 2500m below the ocean surface,[9] but also centimeters below the water surface in geothermal springs.[10] These organisms thrive at pH levels of 5.6-7.9.[11] Members of this genus have been found in many hydrothermal vent systems in the world, including from the seas of Japan,[12] to off the coasts of California.[13] Sodium Chloride salt is typically present in these locations at 1%-3% concentration,[8] but is not a required substrate for these organisms,[14][15] as one study showed Thermococcus members living in fresh hot water systems in New Zealand,[6] but they do require a low concentration of lithium ions for growth.[16] Thermococcus members are described as heterotrophic, chemotrophic,[2][17][18] and are organotrophic sulfanogens; using elemental sulfur and carbon sources including amino acids, carbohydrates, and organic acids such as pyruvate.[17][18][19]

Phylogeny

16S rRNA based LTP_08_2023[20][21][22] GTDB 08-RS214 by Genome Taxonomy Database.[23][24][25]
Thermococcus

T. aggregans

T. aegaeus Arab et al. 2000

T. alcaliphilus

T. litoralis Neuner et al. 2001

T. argininiproducens Park et al. 2023

T. sibiricus

species‑group 2

Pyrococcus

Thermococcus s.s.

T. barophilus

T. paralvinellae

T. acidaminovorans Dirmeier et al. 2001

T. gorgonarius

T. fumicolans Godfroy et al. 1996

T. pacificus

T. waiotapuensis Gonzlez et al. 2001

T. zilligii

T. guaymasensis

T. eurythermalis

T. henrietii

T. nautili

T. gammatolerans

T. kodakarensis

T. peptonophilus

T. stetteri

T. cleftensis

T. siculi

T. indicus

T. celericrescens

T. aciditolerans Li et al. 2021

T. camini

T. profundus

T. piezophilus

T. coalescens Kuwabara et al. 2005

T. prieurii Gorlas et al. 2013

T. thioreducens

T. hydrothermalis Godfroy et al. 1997

T. barossii

T. atlanticus Cambon-Bonavita et al. 2004

T. celer

Thermococcus

T. sibiricus Miroshnichenko et al. 2001

T. aggregans Canganella et al. 1998

T. alcaliphilus Keller et al. 1997

"T. bergensis" Birkeland et al. 2021

species‑group 2
Thermococcus

T. barophilus Marteinsson et al. 1999

T. paralvinellae Hensley et al. 2014

species‑group 3

Pyrococcus

Thermococcus s.s.

T. gammatolerans Jolivet et al. 2003

T. guaymasensis Canganella et al. 1998

T. eurythermalis Zhao et al. 2015

T. henrietii Alain et al. 2021

T. nautili Soler et al. 2007

T. stetteri Miroshnichenko 1990

T. kodakarensis Atomi et al. 2005

T. peptonophilus González et al. 1996

T. profundus Kobayashi and Horikoshi 1995

T. gorgonarius Miroshnichenko et al. 1998

T. zilligii Ronimus et al. 1999

"T. onnurineus" Bae et al. 2006

T. piezophilus Dalmasso et al. 2017

T. celer Zillig 1983 (type sp.)

T. barossii Duffaud et al. 2005

"T. radiotolerans" Jolivet et al. 2004

T. thioreducens Pikuta et al. 2007

T. cleftensis Hensley et al. 2014

T. pacificus Miroshnichenko et al. 1998

T. siculi Grote et al. 2000

T. indicus Lim et al. 2021

T. camini Courtine et al. 2021

T. celericrescens Kuwabara et al. 2007

Unassigned species:

  • T. coalescens Kuwabara et al. 2005
  • T. marinus Jolivet et al. 2004
  • T. mexicalis Antoine 1996
  • "T. waimanguensis" Goetz & Morgan 1999

Metabolism

Metabolically, Thermococcus spp. have developed a different form of glycolysis from eukaryotes and prokaryotes.[26][5] One example of a metabolic pathway for these organisms is the metabolism of peptides,[26] which occurs in three steps: first, hydrolysis of the peptides to amino acids is catalyzed by peptidases,[5] then the conversion of the amino acids to keto acids is catalyzed by aminotransferases,[26] and finally CO2 is released from the oxidative decarboxylation or the keto acids by four different enzymes,[5] which produces coenzyme A derivatives that are used in other important metabolic pathways.[5] Thermococcus species also have the enzyme rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase),[27] which is made from enzymes involved in the metabolism of nucleic acids in Thermococcus kodakarensis,[5][26][27] showing how integrated these metabolic systems truly are for these hyperthermophilic microorganisms.[27] Some nutrients are limiting in Thermococcus cell growth.[27] Nutrients that affect cell growth the most in thermococcal species are carbon and nitrogen sources.[27] Since thermococcal species do not metabolically generate all necessary amino acids, some have to be provided by the environment in which these organisms thrive. Some of these needed amino acids are leucine, isoleucine, and valine (the branched-chain amino acids).[27] When Thermococcus species are supplemented with these amino acids, they can metabolize them and produce acetyl-CoA or succinyl-CoA,[27] which are important precursors used in other metabolic pathways essential for cellular growth and respiration.[27] Thermococcus onnurineus lacks the genes for purine nucleotide biosynthesis and thus relies on environmental sources to meet its purine requirements.[28] With today's technology, Thermococcus members are relatively easy to grow in labs,[29] and are therefore considered model organisms for studying the physiological and molecular pathways of extremophiles.[30][31] Thermococcus kodakarensis is one example of a model Thermococcus species, a microorganism in which has had its entire genome examined and replicated.[31][32][33]

Ecology

Thermococcal species can grow between 60 and 80 °C, which gives them a great ecological advantage to be the first organisms to colonize new hydrothermal environments.[5][34][35] Some thermococcal species produce CO2, H2, and H2S as products of metabolism and respiration.[31] The releases of these molecules are then used by other autotrophic species, aiding the diversity of hydrothermal microbial communities.[5] This type of continuous enrichment culture plays a crucial role in the ecology of deep-sea hydrothermal vents,[36] suggesting that thermococci interact with other organisms via metabolite exchange, which supports the growth of autotrophs.[5] Thermococcus species that release H2 with the use of multiple hydrogenases (including CO-dependent hydrogenases) have been regarded as potential biocatalysts for water-gas shift reactions.[37]

Transportation mechanisms

Thermococcus species are naturally competent in taking up DNA and incorporating donor DNA into their genomes via homologous recombination.[38] These species can produce membrane vesicles (MVs),[38] formed by budding from the outermost cellular membranes,[38][39] which can capture and obtain plasmids from neighboring Archaea species to transfer the DNA into either themselves or surrounding species.[38] These MVs are secreted from the cells in clusters, forming nanospheres or nanotubes,[39] keeping the internal membranes continuous.[38] Competence for DNA transfer and integration of donor DNA into the recipient genome by homologous recombination is common in the archaea and appears to be an adaptation for repairing DNA damage in the recipient cells (see Archaea subsection "Gene transfer and genetic exchange").

Thermococcus species produce numerous MVs, transferring DNA, metabolites, and even toxins in some species;[39] moreover, these MVs protect their contents against thermodegradation by transferring these macromolecules in a protected environment.[38][39] MVs also prevent infections by capturing viral particles.[39] Along with transporting macromolecules, Thermococcus species use MVs to communicate to each other.[38] Furthermore, these MVs are used by a specific species (Thermococcus coalescens) to indicate when aggregation should occur,[38] so these typically single-celled miroorganisms can fuse into one massive single cell.[38]

It has been reported that Thermococcus kodakarensis has four virus-like integrated gene elements containing subtilisin-like serine protease precursors.[40] To date, only two viruses have been isolated from Thermococcus spp., PAVE1 and TPV1.[40] These viruses exist in their hosts in a carrier state.[40]
The process of DNA replication and elongation has been extensively studied in T. kodakarensis.[40] The DNA molecule is a circular structure consisting of about 2 million base pairs in length, and has more than 2,000 sequences that code for proteins.[40]

Future technology

An enzyme from Thermococcus, Tpa-S DNA polymerase, has been found to be more efficient in long and rapid polymerase chain reaction (PCR) than Taq polymerase.[41] Tk-SP, another enzyme from T. kodakarensis,[41][42] can degrade abnormal prion proteins (PrPSc);[41] prions are misfolded proteins that can cause fatal diseases in all organisms.[41] Tk-SP shows broad substrate specificity, and degraded prions exponentially in the lab setting.[41] This enzyme does not require calcium or any other substrate to fold, so is showing great potential in studies this far.[41] Additional studies have been coordinated on the phosphoserine phosphatase (PSP) enzyme of T. onnurineus, which provided an essential component in the regulation of PSP activity.[42] This information is useful for drug companies, because abnormal PSP activity leads to a major decrease in serine levels of the nervous system, causing neurological diseases and complications.[42]

Thermococcus spp. can increase gold mining efficiency up to 95% due to their specific abilities in bioleaching.[43]

See also

References

  1. See the NCBI webpage on Thermococcus. Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information. http://ftp.ncbi.nih.gov/pub/taxonomy/. 
  2. 2.0 2.1 2.2 "Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site". International Journal of Systematic Bacteriology 48 Pt 4 (4): 1181–5. October 1998. doi:10.1099/00207713-48-4-1181. PMID 9828419. 
  3. "Genetic studies on the virus-like regions in the genome of hyperthermophilic archaeon, Thermococcus kodakarensis". Extremophiles 17 (1): 153–60. January 2013. doi:10.1007/s00792-012-0504-6. PMID 23224520. 
  4. Tae-Yang Jung, Y.-S. K., Byoung-Ha Oh, and Euijeon Woo (2012). "Identification of a novel ligand binding site in phosphoserine phosphatase from the hyperthermophilic archaeon Thermococcus onnurineus." Wiley Periodicals: 11.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 "Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems". PLOS ONE 7 (9): e44593. 2012. doi:10.1371/journal.pone.0044593. PMID 22970260. Bibcode2012PLoSO...744593Z. 
  6. 6.0 6.1 "Isolation and Characterization of Extremely Thermophilic Archaebacteria Related to the Genus Thermococcus from Deep-Sea Hydrothermal Guaymas Basin". Current Microbiology 31 (3): 7. 1995. doi:10.1007/bf00293552. 
  7. 7.0 7.1 "Archaeal diversity from hydrothermal systems of Deception Island, Antarctica". Polar Biology 36 (3): 373–380. 2013. doi:10.1007/s00300-012-1267-3. 
  8. 8.0 8.1 "Genome sequence of an oligohaline hyperthermophilic archaeon, Thermococcus zilligii AN1, isolated from a terrestrial geothermal freshwater spring". Journal of Bacteriology 194 (14): 3765–6. July 2012. doi:10.1128/jb.00655-12. PMID 22740682. 
  9. "Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids". PLOS ONE 8 (1): e49044. 2013. doi:10.1371/journal.pone.0049044. PMID 23326305. Bibcode2013PLoSO...849044K. 
  10. "Microbial life in Champagne Pool, a geothermal spring in Waiotapu, New Zealand". Extremophiles 11 (4): 605–14. July 2007. doi:10.1007/s00792-007-0073-2. PMID 17426919. 
  11. "A novel single-strand specific 3'-5' exonuclease found in the hyperthermophilic archaeon, Pyrococcus furiosus". PLOS ONE 8 (3): e58497. 2013. doi:10.1371/journal.pone.0058497. PMID 23505520. Bibcode2013PLoSO...858497T. 
  12. "High level expression and characterization of a thermostable lysophospholipase from Thermococcus kodakarensis KOD1". Extremophiles 16 (4): 619–25. July 2012. doi:10.1007/s00792-012-0461-0. PMID 22622648. 
  13. "Requirement of insertion sequence IS1 for thermal adaptation of Pro-Tk-subtilisin from hyperthermophilic archaeon". Extremophiles 16 (6): 841–51. November 2012. doi:10.1007/s00792-012-0479-3. PMID 22996828. 
  14. "An archaeal histone is required for transformation of Thermococcus kodakarensis". Journal of Bacteriology 194 (24): 6864–74. December 2012. doi:10.1128/jb.01523-12. PMID 23065975. 
  15. "Continuous enrichment cultures: insights into prokaryotic diversity and metabolic interactions in deep-sea vent chimneys". Extremophiles 11 (6): 747–57. November 2007. doi:10.1007/s00792-007-0092-z. PMID 17576518. https://archimer.ifremer.fr/doc/00000/3885/. 
  16. "Thermotolerant hydrogenases: biological diversity, properties, and biotechnological applications". Critical Reviews in Microbiology 34 (3–4): 117–30. 2008. doi:10.1080/10408410802240893. PMID 18728989. 
  17. 17.0 17.1 "The modular respiratory complexes involved in hydrogen and sulfur metabolism by heterotrophic hyperthermophilic archaea and their evolutionary implications". FEMS Microbiology Reviews 37 (2): 182–203. March 2013. doi:10.1111/j.1574-6976.2012.00346.x. PMID 22713092. 
  18. 18.0 18.1 Yuusuke Tokooji, T. S., Shinsuke Fujiwara, Tadayuki Imanaka and Haruyuki Atomi (2013). "Genetic Examination of Initial Amino Acid Oxidation and Glutamate Catabolism in the Hyperthermophilic Archaeon Thermococcus kodakarensis." Journal of Bacteriology: 10.
  19. "CoA biosynthesis in archaea". Biochemical Society Transactions 41 (1): 427–31. February 2013. doi:10.1042/bst20120311. PMID 23356323. 
  20. "The LTP". https://imedea.uib-csic.es/mmg/ltp/#LTP. 
  21. "LTP_all tree in newick format". https://imedea.uib-csic.es/mmg/ltp/wp-content/uploads/ltp/LTP_all_08_2023.ntree. 
  22. "LTP_08_2023 Release Notes". https://imedea.uib-csic.es/mmg/ltp/wp-content/uploads/ltp/LTP_08_2023_release_notes.pdf. 
  23. "GTDB release 08-RS214". https://gtdb.ecogenomic.org/about#4%7C. 
  24. "ar53_r214.sp_label". https://data.gtdb.ecogenomic.org/releases/release214/214.0/auxillary_files/ar53_r214.sp_labels.tree. 
  25. "Taxon History". https://gtdb.ecogenomic.org/taxon_history/. 
  26. 26.0 26.1 26.2 26.3 "Indolepyruvate ferredoxin oxidoreductase: An oxygen-sensitive iron-sulfur enzyme from the hyperthermophilic archaeon Thermococcus profundus". Journal of Bioscience and Bioengineering 114 (1): 23–7. July 2012. doi:10.1016/j.jbiosc.2012.02.014. PMID 22608551. 
  27. 27.0 27.1 27.2 27.3 27.4 27.5 27.6 27.7 "Involvement of thermophilic archaea in the biocorrosion of oil pipelines". Environmental Microbiology 14 (7): 1762–71. July 2012. doi:10.1111/j.1462-2920.2012.02721.x. PMID 22429327. 
  28. "Purine biosynthesis in archaea: variations on a theme". Biology Direct 6: 63. December 2011. doi:10.1186/1745-6150-6-63. PMID 22168471. 
  29. "Isolation and characterization of Thermococcus barossii, sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent flange formation". Systematic and Applied Microbiology 21 (1): 40–9. March 1998. doi:10.1016/s0723-2020(98)80007-6. PMID 9741109. 
  30. "ATP-dependent DNA ligase from Thermococcus sp. 1519 displays a new arrangement of the OB-fold domain". Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 68 (Pt 12): 1440–7. December 2012. doi:10.1107/s1744309112043394. PMID 23192021. 
  31. 31.0 31.1 31.2 "A brief review of microbial geochemistry in the shallow-sea hydrothermal system of Vulcano Island (Italy)". Freiberg Online Geoscience 22: 7. 2009. 
  32. "Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction". Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 68 (Pt 12): 1482–7. December 2012. doi:10.1107/S1744309112032447. PMID 23192028. 
  33. "Microbe Profile: Thermococcus kodakarensis: the model hyperthermophilic archaeon". Microbiology 165 (11): 1166–1168. November 2019. doi:10.1099/mic.0.000839. PMID 31436525. 
  34. "Taxonomy of Nonmethanogenic Hyperthermophilic and Related Thermophilic Archaea". Journal of Bioscience and Bioengineering 96 (3): 203–212. 2003. doi:10.1263/jbb.96.203. PMID 16233511. 
  35. "Comparative analyses of the two proliferating cell nuclear antigens from the hyperthermophilic archaeon, Thermococcus kodakarensis". Genes to Cells 17 (11): 923–37. November 2012. doi:10.1111/gtc.12007. PMID 23078585. 
  36. Hakon Dahle, F. G., Marit Madsen, Nils-Kare Birkeland (2008). "Microbial community structure analysis of produced water from a high-temperature North Sea oil-field." Antonie van Leeuwenhoek 93: 13.
  37. "Improved PCR performance using mutant Tpa-S DNA polymerases from the hyperthermophilic archaeon Thermococcus pacificus". Journal of Biotechnology 164 (2): 363–70. December 2012. doi:10.1016/j.jbiotec.2013.01.022. PMID 23395617. 
  38. 38.0 38.1 38.2 38.3 38.4 38.5 38.6 38.7 38.8 "Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus". Biochemical Society Transactions 41 (1): 436–42. February 2013. doi:10.1042/bst20120293. PMID 23356325. 
  39. 39.0 39.1 39.2 39.3 39.4 "Hyperthermophilic archaea produce membrane vesicles that can transfer DNA". Environmental Microbiology Reports 5 (1): 109–16. February 2013. doi:10.1111/j.1758-2229.2012.00348.x. PMID 23757139. 
  40. 40.0 40.1 40.2 40.3 40.4 "Thermococcus kodakarensis DNA replication". Biochemical Society Transactions 41 (1): 332–8. February 2013. doi:10.1042/bst20120303. PMID 23356307. 
  41. 41.0 41.1 41.2 41.3 41.4 41.5 "Enzymatic activity of a subtilisin homolog, Tk-SP, from Thermococcus kodakarensis in detergents and its ability to degrade the abnormal prion protein". BMC Biotechnology 13: 19. February 2013. doi:10.1186/1472-6750-13-19. PMID 23448268. 
  42. 42.0 42.1 42.2 "Influence of intermolecular contacts on the structure of recombinant prolidase from Thermococcus sibiricus". Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 68 (Pt 11): 1275–8. November 2012. doi:10.1107/s174430911203761x. PMID 23143231. 
  43. "TK1299, a highly thermostable NAD(P)H oxidase from Thermococcus kodakaraensis exhibiting higher enzymatic activity with NADPH". Journal of Bioscience and Bioengineering 116 (1): 39–44. July 2013. doi:10.1016/j.jbiosc.2013.01.020. PMID 23453203. 

Further reading

External links

Wikidata ☰ Q2710532 entry