Chemistry:18-Crown-6

From HandWiki
18-Crown-6
Skeletal formula
Ball-and-stick model
sample
Names
Preferred IUPAC name
1,4,7,10,13,16-Hexaoxacyclooctadecane
Identifiers
3D model (JSmol)
1619616
ChEBI
ChEMBL
ChemSpider
EC Number
  • 241-473-5
4535
UNII
Properties
C12H24O6
Molar mass 264.315 g/mol
Density 1.237 g/cm3
Melting point 37 to 40 °C (99 to 104 °F; 310 to 313 K)
Boiling point 116 °C (241 °F; 389 K) (0.2 Torr)
75 g/L
Hazards
GHS pictograms GHS07: Harmful
GHS Signal word Warning
H302, H315, H319, H335
P261, P264, P270, P271, P280, P301+312, P302+352, P304+340, P305+351+338, P312, P321, P330, P332+313, P337+313, P362, P403+233, P405, P501
Related compounds
Related compounds
Dibenzo-18-crown-6
Triglyme
Hexaaza-18-crown-6
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references
Tracking categories (test):

18-Crown-6 is an organic compound with the formula [C2H4O]6 and the IUPAC name of 1,4,7,10,13,16-hexaoxacyclooctadecane. It is a white, hygroscopic crystalline solid with a low melting point.[1] Like other crown ethers, 18-crown-6 functions as a ligand for some metal cations with a particular affinity for potassium cations (binding constant in methanol: 106 M−1). The point group of 18-crown-6 is S6. The dipole moment of 18-crown-6 varies in different solvent and under different temperature. Under 25 °C, the dipole moment of 18-crown-6 is 2.76 ± 0.06 D in cyclohexane and 2.73 ± 0.02 in benzene.[2] The synthesis of the crown ethers led to the awarding of the Nobel Prize in Chemistry to Charles J. Pedersen.

Synthesis

This compound is prepared by a modified Williamson ether synthesis in the presence of a templating cation:[3]
     (CH2OCH2CH2Cl)2 + (CH2OCH2CH2OH)2 + 2 KOH → (CH2CH2O)6 + 2 KCl + 2 H2O

It can be also prepared by the oligomerization of ethylene oxide.[1] It can be purified by distillation, where its tendency to supercool becomes evident. 18-Crown-6 can also be purified by recrystallisation from hot acetonitrile. It initially forms an insoluble solvate.[3] Rigorously dry material can be made by dissolving the compound in THF followed by the addition of NaK to give [K(18-crown-6)]Na, an alkalide salt.[4]

Crystallographic analysis reveals a relatively flat molecule but one where the oxygen centres are not oriented in the idealized 6-fold symmetric geometry usually shown.[5] The molecule undergoes significant conformational change upon complexation.

Reactions

The complex of H3O+ with 18-crown-6

18-Crown-6 has a high affinity for the hydronium ion H3O+, as it can fit inside the crown ether. Thus, reaction of 18-crown-6 with strong acids gives the cation [math]\ce{ [H3O.18-crown-6]+ }[/math]. For example, interaction of 18-crown-6 with HCl gas in toluene with a little moisture gives an ionic liquid layer with the composition [math]\displaystyle{ \ce{[H3O.18-crown-6]+[HCl2]^{-}.}3.8\ce{C6H5Me} }[/math], from which the solid [math]\ce{ [H3O.18-crown-6]+[HCl2]- }[/math] can be isolated on standing. Reaction of the ionic liquid layer with two molar equivalents of water gives the crystalline product [math]\ce{ (H5O2)[H3O.18-crown-6]Cl2 }[/math].[1][6][7]

Applications

18-crown-6 complex with potassium ion

18-Crown-6 binds to a variety of small cations, using all six oxygens as donor atoms. Crown ethers can be used in the laboratory as phase transfer catalysts.[8] Salts which are normally insoluble in organic solvents are made soluble by crown ether.[9] For example, potassium permanganate dissolves in benzene in the presence of 18-crown-6, giving the so-called "purple benzene", which can be used to oxidize diverse organic compounds.[1]

Various substitution reactions are also accelerated in the presence of 18-crown-6, which suppresses ion-pairing.[10] The anions thereby become naked nucleophiles. For example, using 18-crown-6, potassium acetate is a more powerful nucleophile in organic solvents:[1]

[K(18-crown-6)+]OAc + C6H5CH2Cl → C6H5CH2OAc + [K(18-crown-6)+]Cl

The first electride salt to be examined with X-ray crystallography, [Cs(18-crown-6)2]+·e, was synthesized in 1983. This highly air- and moisture-sensitive solid has a sandwich molecular structure, where the electron is trapped within nearly spherical lattice cavities. However, the shortest electron-electron distance is too long (8.68 Å) to make this material a conductor of electricity.[1]

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Steed, Jonathan W.; Atwood, Jerry L. (2009). Supramolecular Chemistry (2nd ed.). Wiley. ISBN 978-0-470-51233-3. 
  2. Caswell, Lyman R.; Savannunt, Diana S. (January 1988). "Temperature and solvent effects on the experimental dipole moments of three crown ethers". J. Heterocyclic Chem. 25 (1): 73–79. doi:10.1002/jhet.5570250111. 
  3. 3.0 3.1 Gokel, George W.; Cram, Donald J.; Liotta, Charles L.; Harris, Henry P.; Cook, Fred L. (1977). "18-Crown-6". Org. Synth. 57: 30. doi:10.15227/orgsyn.057.0030. 
  4. Jilek, Robert E.; Fischer, Paul J.; Ellis, John E. (2014). "Bis(1,2-Bis(Dimethylphosphano)Ethane)Tricarbonyltitanium(0) and Hexacarbonyltitanate(2−)". Inorganic Syntheses: Volume 36. 36. pp. 127–134. doi:10.1002/9781118744994.ch24. ISBN 9781118744994. 
  5. Dunitz, J. D.; Seiler, P. (1974). "1,4,7,10,13,16-Hexaoxacyclooctadecane". Acta Crystallogr. B30 (11): 2739. doi:10.1107/S0567740874007928. 
  6. Atwood, Jerry L.; Bott, Simon G.; Coleman, Anthony W.; Robinson, Kerry D.; Whetstone, Stephen B.; Means, C. Mitchell (December 1987). "The oxonium cation in aromatic solvents. Synthesis, structure, and solution behavior of [math]\displaystyle{ \ce{[H3O+.18-crown-6][Cl-H-Cl]} }[/math]". Journal of the American Chemical Society 109 (26): 8100–8101. doi:10.1021/ja00260a033. 
  7. Atwood, Jerry L.; Bott, Simon G.; Means, C. Mitchell; Coleman, Anthony W.; Zhang, Hongming; May, Michael T. (February 1990). "Synthesis of salts of the hydrogen dichloride anion in aromatic solvents. 2. Syntheses and crystal structures of [math]\displaystyle{ \ce{[K.18-crown-6][Cl-H-Cl]}, }[/math] [math]\displaystyle{ \ce{[Mg.18-crown-6][Cl-H-Cl]2}, }[/math] [math]\displaystyle{ \ce{[H3O.18-crown-6][Cl-H-Cl]}, }[/math] and the related [math]\displaystyle{ \ce{[H3O.18-crown-6][Br-H-Br]} }[/math]". Inorganic Chemistry 29 (3): 467–470. doi:10.1021/ic00328a025. 
  8. Liotta, C. L.; Berknerin, J. (2004). Paquette, L.. ed. Encyclopedia of Reagents for Organic Synthesis. New York: J. Wiley & Sons. doi:10.1002/047084289X.rc261. ISBN 0471936235. 
  9. Wynn, David (1984). "The Solubility of Alkali-Metal Fluorides in Non-Aqueous Solvents With and Without Crown Ethers...". Talanta 31 (11): 1036–1040. doi:10.1016/0039-9140(84)80244-1. PMID 18963717. 
  10. Cook, Fred L.; Bowers, Chauncey W.; Liotta, C. L. (November 1974). "Chemistry of naked anions. III. Reactions of the 18-crown-6 complex of potassium cyanide with organic substrates in aprotic organic solvents". The Journal of Organic Chemistry 39 (23): 3416–3418. doi:10.1021/jo00937a026. 

External links