Chemistry:Greigite

From HandWiki
Short description: Iron sulfide mineral of spinel structure
Greigite
Greigite structure 110 SFe4 tetrahedra.png
Greigite structure, SFe4 tetrahedra
General
CategorySulfide mineral
Thiospinel group
Spinel structural group
Formula
(repeating unit)
Fe2+
Fe3+

2
S
4
Strunz classification2.DA.05
Crystal systemCubic
Crystal classHexoctahedral (m3m)
H-M symbol: (4/m 3 2/m)
Space groupFd3m
Unit cella = 9.876 Å; Z = 8
Identification
ColorPale pink, tarnishes to metallic blue-black
Crystal habitSpheres of intergrown octahedra and as disseminated microscopic grains
Mohs scale hardness4 to 4.5
|re|er}}Metallic to earthy
DiaphaneityOpaque
Specific gravity4.049
Other characteristicsStrongly magnetic
References[1][2][3]

Greigite is an iron sulfide mineral with the chemical formula Fe2+
Fe3+

2
S
4
. It is the sulfur equivalent of the iron oxide magnetite (Fe3O4). It was first described in 1964 for an occurrence in San Bernardino County, California, and named after the mineralogist and physical chemist Joseph W. Greig (1895–1977).[3][5]

Natural occurrence and composition

It occurs in lacustrine sediments with clays, silts and arkosic sand often in varved sulfide rich clays. It is also found in hydrothermal veins. Greigite is formed by magnetotactic bacteria and sulfate-reducing bacteria.[1] Greigite has also been identified in the sclerites of scaly-foot gastropods.[6]

The mineral typically appears as microscopic (< 0.03 mm) isometric hexoctahedral crystals and as minute sooty masses. Association minerals include montmorillonite, chlorite, calcite, colemanite, veatchite, sphalerite, pyrite, marcasite, galena and dolomite.[1][2]

Common impurities include Cu, Ni, Zn, Mn, Cr, Sb and As.[2] Ni impurities are of particular interest because the structural similarity between Ni-doped greigite and the (Fe,Ni)S clusters present in biological enzymes has led to suggestions that greigite or similar minerals could have acted as catalysts for the origin of life.[7] In particular, the cubic Fe4S4 unit of greigite is found in the Fe4S4 thiocubane units of proteins of relevance to the acetyl-CoA pathway.

Crystal structure

Greigite has the spinel structure. The crystallographic unit cell is cubic, with space group Fd3m. The S anions form a cubic close-packed lattice, and the Fe cations occupy both tetrahedral and octahedral sites.[1][8]

Magnetic and electronic properties

Like the related oxide magnetite (Fe3O4), greigite is ferrimagnetic, with the spin magnetic moments of the Fe cations in the tetrahedral sites oriented in the opposite direction as those in the octahedral sites, and a net magnetization. It is a mixed-valence compound, featuring both Fe(II) and Fe(III) centers in a 1:2 ratio. Both metal sites have high spin quantum numbers. The electronic structure of greigite is that of a half metal.[9][10]

References

  1. 1.0 1.1 1.2 1.3 "Greigite". Handbook of Mineralogy. I (Elements, Sulfides, Sulfosalts). Chantilly, VA, US: Mineralogical Society of America. 1990. ISBN 0962209708. http://rruff.geo.arizona.edu/doclib/hom/greigite.pdf. Retrieved December 5, 2011. 
  2. 2.0 2.1 2.2 Greigite. Mindat.org
  3. 3.0 3.1 Greigite. Webmineral
  4. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine 85 (3): 291–320. doi:10.1180/mgm.2021.43. Bibcode2021MinM...85..291W. 
  5. Skinner, Brian J.; Erd, Richard C.; Grimaldi, Frank S. (1964). "Greigite, the thio-spinel of iron; a new mineral". American Mineralogist 49: 543–55. http://www.minsocam.org/ammin/AM49/AM49_543.pdf. 
  6. "Armor-Plated Snail Discovered in Deep Sea". http://news.nationalgeographic.com/news/2003/11/1107_031107_snailarmor.html. 
  7. Russell, Michael J.; Martin, William (2004). "The rocky roots of the acetyl-CoA pathway". Trends in Biochemical Sciences 29 (7): 358–363. doi:10.1016/j.tibs.2004.05.007. ISSN 0968-0004. PMID 15236743. 
  8. Vaughan, D. J.; Craig, J. R. “Mineral Chemistry of Metal Sulfides" Cambridge University Press, Cambridge: 1978. ISBN:0-521-21489-0.
  9. Devey, A.J.; Grau-Crespo, R.; Leeuw, N.H. (2009). "Electronic and magnetic structure of Fe3S4: GGA+U investigation". Physical Review B 79 (19): 195126. doi:10.1103/PhysRevB.79.195126. Bibcode2009PhRvB..79s5126D. 
  10. Wang, Jun; Cao, Shi-He; Wu, Wei; Zhao, Guo-Meng (2011). "The Curie temperature and magnetic exchange energy in half-metallic greigite Fe3S4". Physica Scripta 83 (4): 045702. doi:10.1088/0031-8949/83/04/045702. Bibcode2011PhyS...83d5702W.