Chemistry:Maltol
Names | |
---|---|
Preferred IUPAC name
3-Hydroxy-2-methyl-4H-pyran-4-one | |
Other names
Larixinic acid; Palatone; Veltol
| |
Identifiers | |
3D model (JSmol)
|
|
ChEMBL | |
ChemSpider | |
PubChem CID
|
|
UNII | |
| |
| |
Properties | |
C6H6O3 | |
Molar mass | 126.111 g·mol−1 |
Density | 1.348 g/cm3 |
Melting point | 161 to 162 °C (322 to 324 °F; 434 to 435 K) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). | |
verify (what is ?) | |
Infobox references | |
Maltol is a naturally occurring organic compound that is used primarily as a flavor enhancer. It is found in nature in the bark of larch trees and in the needles of pine trees, and is produced during the roasting of malt (from which it gets its name) and in the baking of bread. It has the odor of caramel and is used to impart a pleasant aroma to foods and fragrances.
It is used as a flavor enhancer, is designated in the U.S. as INS number 636, and is known in the European E number food additive series as E636.
Chemistry
Maltol is a white crystalline powder that is soluble in hot water and other polar solvents. Like related 3-hydroxy-4-pyrones such as kojic acid, it binds to hard metal centers such as Fe3+, Ga3+, Al3+, and VO2+.[1]
Related to this property, maltol has been reported to greatly increase aluminium uptake in the body[2] and to increase the oral bioavailability of gallium[3] and iron.[4]
Maltol's strong metal binding affinity (good iron chelator), high bioavailability, and low toxicity profile make it an excellent scaffold for designing novel compounds for therapeutic applications.[5][6]
See also
References
- ↑ B. D. Liboiron; K. H. Thompson; G. R. Hanson; E. Lam; N. Aebischer; C. Orvig (2005). "New Insights into the Interactions of Serum Proteins with Bis(maltolato)oxovanadium(IV): Transport and Biotransformation of Insulin-Enhancing Vanadium Pharmaceuticals". J. Am. Chem. Soc. 127 (14): 5104–5115. doi:10.1021/ja043944n. PMID 15810845.
- ↑ N. Kaneko; H. Yasui; J. Takada; K. Suzuki; H. Sakurai (2004). "Orally administrated aluminum-maltolate complex enhances oxidative stress in the organs of mice". J. Inorg. Biochem. 98 (12): 2022–2031. doi:10.1016/j.jinorgbio.2004.09.008. PMID 15541491.
- ↑ L. R. Bernstein; T. Tanner; C. Godfrey; B. Noll (2000). "Chemistry and pharmacokinetics of gallium maltolate, a compound with high oral gallium bioavailability". Metal-Based Drugs 7 (1): 33–48. doi:10.1155/MBD.2000.33. PMID 18475921.
- ↑ D.M. Reffitt; T.J. Burden; P.T. Seed; J. Wood J; R.P. Thompson; J.J. Powell (2000). "Assessment of iron absorption from ferric trimaltol". Ann. Clin. Biochem. 37 (4): 457–66. doi:10.1258/0004563001899645. PMID 10902861.
- ↑ S. Fusi; M. Frosini; M. Biagi; K. Zór; T. Rindzevicius; M.C. Baratto; L. De Vico; M.Corsini (2020). "Iron(III) complexing ability of new ligands based on natural γ-pyrone maltol". Polyhedron 187: 114650. doi:10.1016/j.poly.2020.114650. https://backend.orbit.dtu.dk/ws/files/277585870/F_Fusi_IronIII_complexing_ability_of_new_ligands_based_on_natural_y_pyrone_maltol_Polyhedron_2020.pdf.
- ↑ E. Cini; G. Crisponi; A. Fantasia; R. Cappai; S. Siciliano; G. Di Florio; V.M. Nurchi; M.Corsini (2024). "Multipurpose Iron-Chelating Ligands Inspired by Bioavailable Molecules". Biomolecules 14: 92. doi:10.3390/biom14010092.
Original source: https://en.wikipedia.org/wiki/Maltol.
Read more |