Differintegral

From HandWiki

In fractional calculus, an area of mathematical analysis, the differintegral is a combined differentiation/integration operator. Applied to a function ƒ, the q-differintegral of f, here denoted by

[math]\displaystyle{ \mathbb{D}^q f }[/math]

is the fractional derivative (if q > 0) or fractional integral (if q < 0). If q = 0, then the q-th differintegral of a function is the function itself. In the context of fractional integration and differentiation, there are several legitimate definitions of the differintegral.

Standard definitions

The four most common forms are:

  • The Riemann–Liouville differintegral
    This is the simplest and easiest to use, and consequently it is the most often used. It is a generalization of the Cauchy formula for repeated integration to arbitrary order. Here, [math]\displaystyle{ n = \lceil q \rceil }[/math]. [math]\displaystyle{ \begin{align} {}^{RL}_a\mathbb{D}^q_tf(t) & = \frac{d^qf(t)}{d(t-a)^q} \\ & =\frac{1}{\Gamma(n-q)} \frac{d^n}{dt^n} \int_{a}^t (t-\tau)^{n-q-1}f(\tau)d\tau \end{align} }[/math]
  • The Grunwald–Letnikov differintegral
    The Grunwald–Letnikov differintegral is a direct generalization of the definition of a derivative. It is more difficult to use than the Riemann–Liouville differintegral, but can sometimes be used to solve problems that the Riemann–Liouville cannot. [math]\displaystyle{ \begin{align} {}^{GL}_a\mathbb{D}^q_tf(t) & = \frac{d^qf(t)}{d(t-a)^q} \\ & =\lim_{N \to \infty}\left[\frac{t-a}{N}\right]^{-q}\sum_{j=0}^{N-1}(-1)^j{q \choose j}f\left(t-j\left[\frac{t-a}{N}\right]\right) \end{align} }[/math]
  • The Weyl differintegral
    This is formally similar to the Riemann–Liouville differintegral, but applies to periodic functions, with integral zero over a period.
  • The Caputo differintegral
    In opposite to the Riemann-Liouville differintegral, Caputo derivative of a constant [math]\displaystyle{ f(t) }[/math] is equal to zero. Moreover, a form of the Laplace transform allows to simply evaluate the initial conditions by computing finite, integer-order derivatives at point [math]\displaystyle{ a }[/math]. [math]\displaystyle{ \begin{align} {}^{C}_a\mathbb{D}^q_tf(t) & = \frac{d^qf(t)}{d(t-a)^q} \\ & =\frac{1}{\Gamma(n-q)} \int_{a}^t \frac{f^{(n)}(\tau)}{(t-\tau)^{q-n+1}}d\tau \end{align} }[/math]

Definitions via transforms

The definitions of fractional derivatives given by Liouville, Fourier, and Grunwald and Letnikov coincide.[1] They can be represented via Laplace, Fourier transforms or via Newton series expansion.

Recall the continuous Fourier transform, here denoted [math]\displaystyle{ \mathcal{F} }[/math]: [math]\displaystyle{ F(\omega) = \mathcal{F}\{f(t)\} = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^\infty f(t) e^{- i\omega t}\,dt }[/math]

Using the continuous Fourier transform, in Fourier space, differentiation transforms into a multiplication: [math]\displaystyle{ \mathcal{F}\left[\frac{df(t)}{dt}\right] = i \omega \mathcal{F}[f(t)] }[/math]

So, [math]\displaystyle{ \frac{d^nf(t)}{dt^n} = \mathcal{F}^{-1}\left\{(i \omega)^n\mathcal{F}[f(t)]\right\} }[/math] which generalizes to [math]\displaystyle{ \mathbb{D}^qf(t) = \mathcal{F}^{-1}\left\{(i \omega)^q\mathcal{F}[f(t)]\right\}. }[/math]

Under the bilateral Laplace transform, here denoted by [math]\displaystyle{ \mathcal{L} }[/math] and defined as [math]\displaystyle{ \mathcal{L}[f(t)] =\int_{-\infty}^\infty e^{-st} f(t)\, dt }[/math], differentiation transforms into a multiplication [math]\displaystyle{ \mathcal{L}\left[\frac{df(t)}{dt}\right] = s\mathcal{L}[f(t)]. }[/math]

Generalizing to arbitrary order and solving for [math]\displaystyle{ \mathbb{D}^qf(t) }[/math], one obtains [math]\displaystyle{ \mathbb{D}^qf(t)=\mathcal{L}^{-1}\left\{s^q\mathcal{L}[f(t)]\right\}. }[/math]

Representation via Newton series is the Newton interpolation over consecutive integer orders:

[math]\displaystyle{ \mathbb{D}^qf(t) =\sum_{m=0}^{\infty} \binom {q}m \sum_{k=0}^m\binom mk(-1)^{m-k}f^{(k)}(x). }[/math]

For fractional derivative definitions described in this section, the following identities hold:

[math]\displaystyle{ \mathbb{D}^q(t^n)=\frac{\Gamma(n+1)}{\Gamma(n+1-q)}t^{n-q} }[/math]
[math]\displaystyle{ \mathbb{D}^q(\sin(t))=\sin \left( t+\frac{q\pi}{2} \right) }[/math]
[math]\displaystyle{ \mathbb{D}^q(e^{at})=a^q e^{at} }[/math][2]

Basic formal properties

  • Linearity rules [math]\displaystyle{ \mathbb{D}^q(f+g) = \mathbb{D}^q(f)+\mathbb{D}^q(g) }[/math]

[math]\displaystyle{ \mathbb{D}^q(af) = a\mathbb{D}^q(f) }[/math]

  • Zero rule [math]\displaystyle{ \mathbb{D}^0 f = f }[/math]
  • Product rule [math]\displaystyle{ \mathbb{D}^q_t(fg) = \sum_{j=0}^{\infty} {q \choose j}\mathbb{D}^j_t(f)\mathbb{D}^{q-j}_t(g) }[/math]

In general, composition (or semigroup) rule is a desirable property, but is hard to achieve mathematically and hence is not always completely satisfied by each proposed operator;[3] this forms part of the decision making process on which one to choose:

  • [math]\displaystyle{ \mathbb{D}^a\mathbb{D}^{b}f = \mathbb{D}^{a+b}f }[/math] (ideally)
  • [math]\displaystyle{ \mathbb{D}^a\mathbb{D}^{b}f \neq \mathbb{D}^{a+b}f }[/math] (in practice)

See also

References

External links