Fisher–Tippett–Gnedenko theorem

From HandWiki

In statistics, the Fisher–Tippett–Gnedenko theorem (also the Fisher–Tippett theorem or the extreme value theorem) is a general result in extreme value theory regarding asymptotic distribution of extreme order statistics. The maximum of a sample of iid random variables after proper renormalization can only converge in distribution to one of only 3 possible distribution families: the Gumbel distribution, the Fréchet distribution, or the Weibull distribution. Credit for the extreme value theorem and its convergence details are given to Fréchet (1927),[1] Fisher and Tippett (1928),[2] Mises (1936),[3][4] and Gnedenko (1943).[5]

The role of the extremal types theorem for maxima is similar to that of central limit theorem for averages, except that the central limit theorem applies to the average of a sample from any distribution with finite variance, while the Fisher–Tippet–Gnedenko theorem only states that if the distribution of a normalized maximum converges, then the limit has to be one of a particular class of distributions. It does not state that the distribution of the normalized maximum does converge.

Statement

Let [math]\displaystyle{ \ X_1, X_2, \ldots, X_n\ }[/math] be an n-sized sample of independent and identically-distributed random variables, each of whose cumulative distribution function is [math]\displaystyle{ \ F ~. }[/math] Suppose that there exist two sequences of real numbers [math]\displaystyle{ \ a_n \gt 0\ }[/math] and [math]\displaystyle{ \ b_n \in \mathbb{R}\ }[/math] such that the following limits converge to a non-degenerate distribution function:

[math]\displaystyle{ \lim_{n \to \infty} \boldsymbol\mathcal{P}\left\{ \frac{\ \max\{X_1, \dots, X_n\} - b_n\ }{ a_n } \leq x\ \right\} = G(x)\ , }[/math]

or equivalently:

[math]\displaystyle{ \lim_{n \to \infty}\Bigl(\ F\left(\ a_n\ x + b_n\ \right) \Bigr)^n = G(x) ~. }[/math]

In such circumstances, the limiting distribution [math]\displaystyle{ \ G\ }[/math] belongs to either the Gumbel, the Fréchet, or the Weibull distribution family.[6]

In other words, if the limit above converges, then up to a linear change of coordinates [math]\displaystyle{ G(x) }[/math] will assume either the form:[7]

[math]\displaystyle{ G_\gamma(x) = \exp\left( -\Bigl( 1 + \gamma\ x \Bigr)^{\left( \tfrac{ -1\;}{\gamma} \right) }\right) \quad }[/math] for [math]\displaystyle{ \quad \gamma \ne 0\ , }[/math]

with the non-zero parameter [math]\displaystyle{ \ \gamma\ }[/math] also satisfying [math]\displaystyle{ \ 1 + \gamma\ x \gt 0\ }[/math] for every [math]\displaystyle{ \ x\ }[/math] value supported by [math]\displaystyle{ \ F\ }[/math] (for all values [math]\displaystyle{ \ x\ }[/math] for which [math]\displaystyle{ \ F(x) \ne 0\ }[/math]). Otherwise it has the form:

[math]\displaystyle{ G_0(x) = \exp\bigl(\ -\exp(-x)\ \bigr) \quad }[/math] for [math]\displaystyle{ \quad \gamma = 0 ~. }[/math]

This is the cumulative distribution function of the generalized extreme value distribution (GEV) with extreme value index [math]\displaystyle{ \ \gamma ~.\ }[/math] The GEV distribution groups the Gumbel, Fréchet, and Weibull distributions into a single composite form.

Conditions of convergence

The Fisher–Tippett–Gnedenko theorem is a statement about the convergence of the limiting distribution [math]\displaystyle{ \ G(x)\ , }[/math] above. The study of conditions for convergence of [math]\displaystyle{ \ G\ }[/math] to particular cases of the generalized extreme value distribution began with Mises (1936)[3][5][4] and was further developed by Gnedenko (1943).[5]

Let [math]\displaystyle{ \ F\ }[/math] be the distribution function of [math]\displaystyle{ \ X\ , }[/math] and [math]\displaystyle{ \ X_1, \dots, X_n\ }[/math] be some i.i.d. sample thereof.
Also let [math]\displaystyle{ \ x_\mathsf{max}\ }[/math] be the population maximum: [math]\displaystyle{ \ x_\mathsf{max} \equiv \sup\ \{\ x\ \mid\ F(x) \lt 1\ \} ~.\ }[/math]

The limiting distribution of the normalized sample maximum, given by [math]\displaystyle{ G }[/math] above, will then be:[7]


Fréchet distribution [math]\displaystyle{ \ \left(\ \gamma \gt 0\ \right) }[/math]
For strictly positive [math]\displaystyle{ \ \gamma \gt 0\ , }[/math] the limiting distribution converges if and only if
[math]\displaystyle{ \ x_\mathsf{max} = \infty\ }[/math]
and
[math]\displaystyle{ \ \lim_{t \rightarrow \infty} \frac{\ 1 - F(u\ t)\ }{ 1 - F(t) } = u^{\left( \tfrac{-1~}{ \gamma } \right) }\ }[/math] for all [math]\displaystyle{ \ u \gt 0 ~. }[/math]
In this case, possible sequences that will satisfy the theorem conditions are
[math]\displaystyle{ b_n = 0 }[/math]
and
[math]\displaystyle{ \ a_n = {F^{-1}}\!\! \left( 1-\tfrac{1}{\ n\ } \right) ~. }[/math]
Strictly positive [math]\displaystyle{ \ \gamma\ }[/math] corresponds to what is called a heavy tailed distribution.


Gumbel distribution [math]\displaystyle{ \ \left(\ \gamma = 0\ \right) }[/math]
For trivial [math]\displaystyle{ \ \gamma = 0\ , }[/math] and with [math]\displaystyle{ \ x_\mathsf{max}\ }[/math] either finite or infinite, the limiting distribution converges if and only if
[math]\displaystyle{ \ \lim_{t \rightarrow x_\mathsf{max} } \frac{\ 1 - F\bigl(\ t + u\ \tilde{g}(t)\ \bigr)\ }{ 1 - F(t) } = e^{-u}\ }[/math] for all [math]\displaystyle{ \ u \gt 0\ }[/math]
with
[math]\displaystyle{ \ \tilde{g}(t) \equiv \frac{\ \int_{t}^{ x_\mathsf{max} }\Bigl(\ 1 - F(s)\ \Bigr)\ \mathrm{d}\ s\ }{ 1 - F(t) } ~. }[/math]
Possible sequences here are
[math]\displaystyle{ \ b_n = {F^{-1}}\!\! \left(\ 1 - \tfrac{1}{\ n\ }\ \right)\ }[/math]
and
[math]\displaystyle{ \ a_n = \tilde{g}\Bigl(\; {F^{-1}}\!\! \left(\ 1 - \tfrac{1}{\ n\ }\ \right)\; \Bigr) ~. }[/math]


Weibull distribution [math]\displaystyle{ \ \left(\ \gamma \lt 0\ \right) }[/math]
For strictly negative [math]\displaystyle{ \ \gamma \lt 0\ }[/math] the limiting distribution converges if and only if
[math]\displaystyle{ \ x_\mathsf{max}\ \lt \infty \quad }[/math] (is finite)
and
[math]\displaystyle{ \ \lim_{t \rightarrow 0^+} \frac{\ 1 - F\!\left(\ x_\mathsf{max} - u\ t\ \right)\ }{ 1 - F(\ x_\mathsf{max} - t\ ) } = u^{\left( \tfrac{-1~}{\ \gamma \ } \right) }\ }[/math] for all [math]\displaystyle{ \ u \gt 0 ~. }[/math]
Note that for this case the exponential term [math]\displaystyle{ \ \tfrac{-1~}{\ \gamma \ }\ }[/math] is strictly positive, since [math]\displaystyle{ \ \gamma\ }[/math] is strictly negative.
Possible sequences here are
[math]\displaystyle{ \ b_n = x_\mathsf{max}\ }[/math]
and
[math]\displaystyle{ \ a_n = x_\mathsf{max} - {F^{-1}}\!\! \left(\ 1 - \frac{1}{\ n\ }\ \right) ~. }[/math]


Note that the second formula (the Gumbel distribution) is the limit of the first (the Fréchet distribution) as [math]\displaystyle{ \ \gamma\ }[/math] goes to zero.

Examples

Fréchet distribution

The Cauchy distribution's density function is:

[math]\displaystyle{ f(x) = \frac{ 1 }{\ \pi^2 + x^2\ }\ , }[/math]

and its cumulative distribution function is:

[math]\displaystyle{ F(x) = \frac{\ 1\ }{ 2 } + \frac{1}{\ \pi\ } \arctan\left( \frac{ x }{\ \pi\ } \right) ~. }[/math]

A little bit of calculus show that the right tail's cumulative distribution [math]\displaystyle{ \ 1 - F(x)\ }[/math] is asymptotic to [math]\displaystyle{ \ \frac{ 1 }{\ x\ }\ , }[/math] or

[math]\displaystyle{ \ln F(x) \rightarrow \frac{-1~}{\ x\ } \quad \mathsf{~ as ~} \quad x \rightarrow \infty \ , }[/math]

so we have

[math]\displaystyle{ \ln \left(\ F(x)^n\ \right) = n\ \ln F(x) \sim -\frac{-n~}{\ x\ } ~. }[/math]

Thus we have

[math]\displaystyle{ F(x)^n \approx \exp \left( \frac{-n~}{\ x\ } \right) }[/math]

and letting [math]\displaystyle{ \ u \equiv \frac{ x }{\ n\ } - 1\ }[/math] (and skipping some explanation)

[math]\displaystyle{ \lim_{n \to \infty}\Bigl(\ F( n\ u + n )^n\ \Bigr) = \exp\left( \tfrac{-1~}{\ 1 + u \ } \right) = G_1(u)\ }[/math]

for any [math]\displaystyle{ \ u ~. }[/math] The expected maximum value therefore goes up linearly with n .

Gumbel distribution

Let us take the normal distribution with cumulative distribution function

[math]\displaystyle{ F(x) = \frac{1}{2} \operatorname{erfc}\left( \frac{-x~}{\ \sqrt{2\ }\ } \right) ~. }[/math]

We have

[math]\displaystyle{ \ln F(x) \rightarrow - \frac{\ \exp\left( -\tfrac{1}{2} x^2 \right)\ }{ \sqrt{2\pi\ }\ x } \quad \mathsf{~ as ~} \quad x \rightarrow \infty }[/math]

and thus

[math]\displaystyle{ \ln \left(\ F(x)^n\ \right) = n \ln F(x) \rightarrow -\frac{\ n \exp\left( -\tfrac{1}{2} x^2 \right)\ }{ \sqrt{2 \pi\ }\ x } \quad \mathsf{~ as ~} \quad x \rightarrow \infty ~. }[/math]

Hence we have

[math]\displaystyle{ F(x)^n \approx \exp \left( -\ \frac{\ n\ \exp\left( -\tfrac{1}{2} x^2 \right)\ }{\ \sqrt{2\pi\ }\ x\ } \right) ~. }[/math]

If we define [math]\displaystyle{ \ c_n\ }[/math] as the value that exactly satisfies

[math]\displaystyle{ \frac{\ n \exp\left( -\ \tfrac{1}{2} c_n^2 \right)\ }{\ \sqrt{2\pi\ }\ c_n\ } = 1\ , }[/math]

then around [math]\displaystyle{ \ x = c_n\ }[/math]

[math]\displaystyle{ \frac{\ n\ \exp \left( -\ \tfrac{1}{2} x^2 \right)\ }{ \sqrt{2\pi\ }\ x } \approx \exp\left(\ c_n\ ( c_n - x )\ \right) ~. }[/math]

As [math]\displaystyle{ \ n\ }[/math] increases, this becomes a good approximation for a wider and wider range of [math]\displaystyle{ \ c_n\ ( c_n - x )\ }[/math] so letting [math]\displaystyle{ \ u \equiv c_n\ ( c_n - x )\ }[/math] we find that

[math]\displaystyle{ \lim_{n \to \infty}\biggl(\ F\left( \tfrac{u}{~ c_n\ } + c_n \right)^n\ \biggr) = \exp\! \Bigl( -\exp(-u) \Bigr) = G_0(u) ~. }[/math]

Equivalently,

[math]\displaystyle{ \lim_{n \to \infty} \boldsymbol\mathcal{P}\ \Biggl( \frac{\ \max \{ X_1,\ \ldots,\ X_n \} - c_n\ }{ \left( \frac{u}{~ c_n\ } \right) } \leq u \Biggr) = \exp\! \Bigl( -\exp(-u) \Bigr) = G_0(u) ~. }[/math]

With this result, we see retrospectively that we need [math]\displaystyle{ \ \ln c_n \approx \frac{\ \ln\ln n\ }{ 2 }\ }[/math] and then

[math]\displaystyle{ c_n \approx \sqrt{ 2\ln n\ }\ , }[/math]

so the maximum is expected to climb toward infinity ever more slowly.

Weibull distribution

We may take the simplest example, a uniform distribution between 0 and 1, with cumulative distribution function

[math]\displaystyle{ F(x) = x\ }[/math] for any x value from 0 to 1 .

For values of [math]\displaystyle{ \ x\ \rightarrow\ 1\ }[/math] we have

[math]\displaystyle{ \ln\Bigl(\ F(x)^n\ \Bigr) = n\ \ln F(x)\ \rightarrow\ n\ (\ 1 - x\ ) ~. }[/math]

So for [math]\displaystyle{ \ x \approx 1\ }[/math] we have

[math]\displaystyle{ \ F(x)^n \approx \exp(\ n\ x - n\ ) ~. }[/math]

Let [math]\displaystyle{ \ u \equiv 1 + n\ (\ 1 - x\ )\ }[/math] and get

[math]\displaystyle{ \lim_{n \to \infty} \Bigl(\ F\! \left( \tfrac{\ u\ }{n} + 1 - \tfrac{\ 1\ }{ n } \right)\ \Bigr)^n = \exp\! \bigl(\ -(1 - u)\ \bigr) = G_{-1}(u) ~. }[/math]

Close examination of that limit shows that the expected maximum approaches 1 in inverse proportion to n .

See also


References

  1. Fréchet, M. (1927). "Sur la loi de probabilité de l'écart maximum". Annales de la Société Polonaise de Mathématique 6 (1): 93–116. 
  2. Fisher, R.A.; Tippett, L.H.C. (1928). "Limiting forms of the frequency distribution of the largest and smallest member of a sample". Proc. Camb. Phil. Soc. 24 (2): 180–190. doi:10.1017/s0305004100015681. Bibcode1928PCPS...24..180F. 
  3. 3.0 3.1 von Mises, R. (1936). "La distribution de la plus grande de n valeurs". Rev. Math. Union Interbalcanique. 1: 141–160. 
  4. 4.0 4.1 Falk, Michael; Marohn, Frank (1993). "von Mises conditions revisited". The Annals of Probability: 1310–1328. 
  5. 5.0 5.1 5.2 Gnedenko, B.V. (1943). "Sur la distribution limite du terme maximum d'une serie aleatoire". Annals of Mathematics 44 (3): 423–453. doi:10.2307/1968974. 
  6. Mood, A.M. (1950). "5. Order Statistics". Introduction to the theory of statistics. New York, NY: McGraw-Hill. pp. 251–270. 
  7. 7.0 7.1 Haan, Laurens; Ferreira, Ana (2007). Extreme Value Theory: An introduction. Springer. 

Further reading