Generalized Pareto distribution

From HandWiki
Short description: Family of probability distributions often used to model tails or extreme values
Generalized Pareto distribution
Probability density function
Gpdpdf
GPD distribution functions for μ=0 and different values of σ and ξ
Cumulative distribution function
Gpdcdf
Parameters

μ(,) location (real)
σ(0,) scale (real)

ξ(,) shape (real)
Support

xμ(ξ0)

μxμσ/ξ(ξ<0)
PDF

1σ(1+ξz)(1/ξ+1)

where z=xμσ
CDF 1(1+ξz)1/ξ
Mean μ+σ1ξ(ξ<1)
Median μ+σ(2ξ1)ξ
Mode μ
Variance σ2(1ξ)2(12ξ)(ξ<1/2)
Skewness 2(1+ξ)12ξ(13ξ)(ξ<1/3)
Kurtosis 3(12ξ)(2ξ2+ξ+3)(13ξ)(14ξ)3(ξ<1/4)
Entropy log(σ)+ξ+1
MGF eθμj=0[(θσ)jk=0j(1kξ)],(kξ<1)
CF eitμj=0[(itσ)jk=0j(1kξ)],(kξ<1)

In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions. It is often used to model the tails of another distribution. It is specified by three parameters: location μ, scale σ, and shape ξ.[2][3] Sometimes it is specified by only scale and shape[4] and sometimes only by its shape parameter. Some references give the shape parameter as κ=ξ.[5]

Definition

The standard cumulative distribution function (cdf) of the GPD is defined by[6]

Fξ(z)={1(1+ξz)1/ξfor ξ0,1ezfor ξ=0.

where the support is z0 for ξ0 and 0z1/ξ for ξ<0. The corresponding probability density function (pdf) is

fξ(z)={(1+ξz)ξ+1ξfor ξ0,ezfor ξ=0.

Characterization

The related location-scale family of distributions is obtained by replacing the argument z by xμσ and adjusting the support accordingly.

The cumulative distribution function of XGPD(μ,σ,ξ) (μ, σ>0, and ξ) is

F(μ,σ,ξ)(x)={1(1+ξ(xμ)σ)1/ξfor ξ0,1exp(xμσ)for ξ=0,

where the support of X is xμ when ξ0, and μxμσ/ξ when ξ<0.

The probability density function (pdf) of XGPD(μ,σ,ξ) is

f(μ,σ,ξ)(x)=1σ(1+ξ(xμ)σ)(1ξ1),

again, for xμ when ξ0, and μxμσ/ξ when ξ<0.

The pdf is a solution of the following differential equation: [citation needed]

{f(x)(μξ+σ+ξx)+(ξ+1)f(x)=0,f(0)=(1μξσ)1ξ1σ}

Special cases

Generating generalized Pareto random variables

Generating GPD random variables

If U is uniformly distributed on (0, 1], then

X=μ+σ(Uξ1)ξGPD(μ,σ,ξ0)

and

X=μσln(U)GPD(μ,σ,ξ=0).

Both formulas are obtained by inversion of the cdf.

In Matlab Statistics Toolbox, you can easily use "gprnd" command to generate generalized Pareto random numbers.

GPD as an Exponential-Gamma Mixture

A GPD random variable can also be expressed as an exponential random variable, with a Gamma distributed rate parameter.

X|ΛExp(Λ)

and

ΛGamma(α,β)

then

XGPD(ξ=1/α, σ=β/α)

Notice however, that since the parameters for the Gamma distribution must be greater than zero, we obtain the additional restrictions that:ξ must be positive.

In addition to this mixture (or compound) expression, the generalized Pareto distribution can also be expressed as a simple ratio. Concretely, for YExponential(1) and ZGamma(1/ξ,1), we have μ+σYξZGPD(μ,σ,ξ). This is a consequence of the mixture after setting β=α and taking into account that the rate parameters of the exponential and gamma distribution are simply inverse multiplicative constants.

Exponentiated generalized Pareto distribution

The exponentiated generalized Pareto distribution (exGPD)

The pdf of the exGPD(σ,ξ) (exponentiated generalized Pareto distribution) for different values σ and ξ.

If XGPD (μ=0, σ, ξ ), then Y=log(X) is distributed according to the exponentiated generalized Pareto distribution, denoted by Y exGPD (σ, ξ ).

The probability density function(pdf) of Y exGPD (σ, ξ )(σ>0) is

g(σ,ξ)(y)={eyσ(1+ξeyσ)1/ξ1for ξ0,1σeyey/σfor ξ=0,

where the support is <y< for ξ0, and <ylog(σ/ξ) for ξ<0.

For all ξ, the logσ becomes the location parameter. See the right panel for the pdf when the shape ξ is positive.

The exGPD has finite moments of all orders for all σ>0 and <ξ<.

The variance of the exGPD(σ,ξ) as a function of ξ. Note that the variance only depends on ξ. The red dotted line represents the variance evaluated at ξ=0, that is, ψ(1)=π2/6.

The moment-generating function of YexGPD(σ,ξ) is

MY(s)=E[esY]={1ξ(σξ)sB(s+1,1/ξ)for s(1,),ξ<0,1ξ(σξ)sB(s+1,1/ξs)for s(1,1/ξ),ξ>0,σsΓ(1+s)for s(1,),ξ=0,

where B(a,b) and Γ(a) denote the beta function and gamma function, respectively.

The expected value of Y exGPD (σ, ξ ) depends on the scale σ and shape ξ parameters, while the ξ participates through the digamma function:

E[Y]={log (σξ)+ψ(1)ψ(1/ξ+1)for ξ<0,log (σξ)+ψ(1)ψ(1/ξ)for ξ>0,logσ+ψ(1)for ξ=0.

Note that for a fixed value for the ξ(,), the log σ plays as the location parameter under the exponentiated generalized Pareto distribution.

The variance of Y exGPD (σ, ξ ) depends on the shape parameter ξ only through the polygamma function of order 1 (also called the trigamma function):

Var[Y]={ψ(1)ψ(1/ξ+1)for ξ<0,ψ(1)+ψ(1/ξ)for ξ>0,ψ(1)for ξ=0.

See the right panel for the variance as a function of ξ. Note that ψ(1)=π2/61.644934.

Note that the roles of the scale parameter σ and the shape parameter ξ under YexGPD(σ,ξ) are separably interpretable, which may lead to a robust efficient estimation for the ξ than using the XGPD(σ,ξ) [2]. The roles of the two parameters are associated each other under XGPD(μ=0,σ,ξ) (at least up to the second central moment); see the formula of variance Var(X) wherein both parameters are participated.

The Hill's estimator

Assume that X1:n=(X1,,Xn) are n observations (not need to be i.i.d.) from an unknown heavy-tailed distribution F such that its tail distribution is regularly varying with the tail-index 1/ξ (hence, the corresponding shape parameter is ξ). To be specific, the tail distribution is described as

F¯(x)=1F(x)=L(x)x1/ξ,for some ξ>0,where L is a slowly varying function.

It is of a particular interest in the extreme value theory to estimate the shape parameter ξ, especially when ξ is positive (so called the heavy-tailed distribution).

Let Fu be their conditional excess distribution function. Pickands–Balkema–de Haan theorem (Pickands, 1975; Balkema and de Haan, 1974) states that for a large class of underlying distribution functions F, and large u, Fu is well approximated by the generalized Pareto distribution (GPD), which motivated Peak Over Threshold (POT) methods to estimate ξ: the GPD plays the key role in POT approach.

A renowned estimator using the POT methodology is the Hill's estimator. Technical formulation of the Hill's estimator is as follows. For 1in, write X(i) for the i-th largest value of X1,,Xn. Then, with this notation, the Hill's estimator (see page 190 of Reference 5 by Embrechts et al [3]) based on the k upper order statistics is defined as

ξ^kHill=ξ^kHill(X1:n)=1k1j=1k1log(X(j)X(k)),for 2kn.

In practice, the Hill estimator is used as follows. First, calculate the estimator ξ^kHill at each integer k{2,,n}, and then plot the ordered pairs {(k,ξ^kHill)}k=2n. Then, select from the set of Hill estimators {ξ^kHill}k=2n which are roughly constant with respect to k: these stable values are regarded as reasonable estimates for the shape parameter ξ. If X1,,Xn are i.i.d., then the Hill's estimator is a consistent estimator for the shape parameter ξ [4].

Note that the Hill estimator ξ^kHill makes a use of the log-transformation for the observations X1:n=(X1,,Xn). (The Pickand's estimator ξ^kPickand also employed the log-transformation, but in a slightly different way [5].)

See also

References

  1. 1.0 1.1 Norton, Matthew; Khokhlov, Valentyn; Uryasev, Stan (2019). "Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation". Annals of Operations Research (Springer) 299 (1–2): 1281–1315. doi:10.1007/s10479-019-03373-1. http://uryasev.ams.stonybrook.edu/wp-content/uploads/2019/10/Norton2019_CVaR_bPOE.pdf. Retrieved 2023-02-27. 
  2. Coles, Stuart (2001-12-12). An Introduction to Statistical Modeling of Extreme Values. Springer. p. 75. ISBN 9781852334598. https://books.google.com/books?id=2nugUEaKqFEC. 
  3. Dargahi-Noubary, G. R. (1989). "On tail estimation: An improved method". Mathematical Geology 21 (8): 829–842. doi:10.1007/BF00894450. 
  4. Hosking, J. R. M.; Wallis, J. R. (1987). "Parameter and Quantile Estimation for the Generalized Pareto Distribution". Technometrics 29 (3): 339–349. doi:10.2307/1269343. 
  5. Davison, A. C. (1984-09-30). "Modelling Excesses over High Thresholds, with an Application". in de Oliveira, J. Tiago. Statistical Extremes and Applications. Kluwer. p. 462. ISBN 9789027718044. https://books.google.com/books?id=6M03_6rm8-oC&pg=PA462. 
  6. Embrechts, Paul; Klüppelberg, Claudia; Mikosch, Thomas (1997-01-01). Modelling extremal events for insurance and finance. Springer. p. 162. ISBN 9783540609315. https://books.google.com/books?id=BXOI2pICfJUC. 
  7. Castillo, Enrique, and Ali S. Hadi. "Fitting the generalized Pareto distribution to data." Journal of the American Statistical Association 92.440 (1997): 1609-1620.

Further reading