Generalized trigonometry

From HandWiki
Short description: Study of triangles in other spaces than the Euclidean plane

Ordinary trigonometry studies triangles in the Euclidean plane [math]\displaystyle{ \mathbb{R}^2 }[/math]. There are a number of ways of defining the ordinary Euclidean geometric trigonometric functions on real numbers, for example right-angled triangle definitions, unit circle definitions, series definitions, definitions via differential equations, and definitions using functional equations. Generalizations of trigonometric functions are often developed by starting with one of the above methods and adapting it to a situation other than the real numbers of Euclidean geometry. Generally, trigonometry can be the study of triples of points in any kind of geometry or space. A triangle is the polygon with the smallest number of vertices, so one direction to generalize is to study higher-dimensional analogs of angles and polygons: solid angles and polytopes such as tetrahedrons and n-simplices.

Trigonometry

Higher dimensions

Trigonometric functions

  • Trigonometric functions can be defined for fractional differential equations.[10]

Other

See also

References

  1. Thompson, K.; Dray, T. (2000), "Taxicab angles and trigonometry", Pi Mu Epsilon Journal 11 (2): 87–96, Bibcode2011arXiv1101.2917T, http://www.physics.orst.edu/~tevian/taxicab/taxicab.pdf 
  2. Herranz, Francisco J.; Ortega, Ramón; Santander, Mariano (2000), "Trigonometry of spacetimes: a new self-dual approach to a curvature/signature (in)dependent trigonometry", Journal of Physics A 33 (24): 4525–4551, doi:10.1088/0305-4470/33/24/309, Bibcode2000JPhA...33.4525H 
  3. Liu, Honghai; Coghill, George M. (2005), "Fuzzy Qualitative Trigonometry", 2005 IEEE International Conference on Systems, Man and Cybernetics, 2, pp. 1291–1296, archived from the original on 2011-07-25, https://web.archive.org/web/20110725170037/http://userweb.port.ac.uk/~liuh/Papers/LiuCoghill05c_SMC.pdf 
  4. Gustafson, K. E. (1999), "A computational trigonometry, and related contributions by Russians Kantorovich, Krein, Kaporin", Вычислительные технологии 4 (3): 73–83, http://www.ict.nsc.ru/jct/getfile.php?id=159 
  5. Karpenkov, Oleg (2008), "Elementary notions of lattice trigonometry", Mathematica Scandinavica 102 (2): 161–205, doi:10.7146/math.scand.a-15058 
  6. Aslaksen, Helmer; Huynh, Hsueh-Ling (1997), "Laws of trigonometry in symmetric spaces", Geometry from the Pacific Rim (Singapore, 1994), Berlin: de Gruyter, pp. 23–36 
  7. Leuzinger, Enrico (1992), "On the trigonometry of symmetric spaces", Commentarii Mathematici Helvetici 67 (2): 252–286, doi:10.1007/BF02566499 
  8. Masala, G. (1999), "Regular triangles and isoclinic triangles in the Grassmann manifolds G2(RN)", Rendiconti del Seminario Matematico Università e Politecnico di Torino. 57 (2): 91–104 
  9. Richardson, G. (1902-03-01). "The Trigonometry of the Tetrahedron". The Mathematical Gazette 2 (32): 149–158. doi:10.2307/3603090. https://zenodo.org/record/1449743. 
  10. West, Bruce J.; Bologna, Mauro; Grigolini, Paolo (2003), Physics of fractal operators, Institute for Nonlinear Science, New York: Springer-Verlag, p. 101, doi:10.1007/978-0-387-21746-8, ISBN 0-387-95554-2 
  11. Harkin, Anthony A.; Harkin, Joseph B. (2004), "Geometry of generalized complex numbers", Mathematics Magazine 77 (2): 118–129, doi:10.1080/0025570X.2004.11953236 
  12. Yamaleev, Robert M. (2005), "Complex algebras on n-order polynomials and generalizations of trigonometry, oscillator model and Hamilton dynamics", Advances in Applied Clifford Algebras 15 (1): 123–150, doi:10.1007/s00006-005-0007-y, archived from the original on 2011-07-22, https://web.archive.org/web/20110722194119/http://www.clifford-algebras.org/v15/v151/YAMAL151.pdf 
  13. Antippa, Adel F. (2003), "The combinatorial structure of trigonometry", International Journal of Mathematics and Mathematical Sciences 2003 (8): 475–500, doi:10.1155/S0161171203106230, http://www.emis.de/journals/HOA/IJMMS/2003/8475.pdf