Interior product

From HandWiki
Short description: Mapping from p forms to p-1 forms


In mathematics, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, or inner derivation) is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold. The interior product, named in opposition to the exterior product, should not be confused with an inner product. The interior product [math]\displaystyle{ \iota_X \omega }[/math] is sometimes written as [math]\displaystyle{ X \mathbin{\lrcorner} \omega. }[/math][1]

Definition

The interior product is defined to be the contraction of a differential form with a vector field. Thus if [math]\displaystyle{ X }[/math] is a vector field on the manifold [math]\displaystyle{ M, }[/math] then [math]\displaystyle{ \iota_X : \Omega^p(M) \to \Omega^{p-1}(M) }[/math] is the map which sends a [math]\displaystyle{ p }[/math]-form [math]\displaystyle{ \omega }[/math] to the [math]\displaystyle{ (p - 1) }[/math]-form [math]\displaystyle{ \iota_X \omega }[/math] defined by the property that [math]\displaystyle{ (\iota_X\omega)\left(X_1, \ldots, X_{p-1}\right) = \omega\left(X, X_1, \ldots, X_{p-1}\right) }[/math] for any vector fields [math]\displaystyle{ X_1, \ldots, X_{p-1}. }[/math]

The interior product is the unique antiderivation of degree −1 on the exterior algebra such that on one-forms [math]\displaystyle{ \alpha }[/math] [math]\displaystyle{ \displaystyle\iota_X \alpha = \alpha(X) = \langle \alpha, X \rangle, }[/math] where [math]\displaystyle{ \langle \,\cdot, \cdot\, \rangle }[/math] is the duality pairing between [math]\displaystyle{ \alpha }[/math] and the vector [math]\displaystyle{ X. }[/math] Explicitly, if [math]\displaystyle{ \beta }[/math] is a [math]\displaystyle{ p }[/math]-form and [math]\displaystyle{ \gamma }[/math] is a [math]\displaystyle{ q }[/math]-form, then [math]\displaystyle{ \iota_X(\beta \wedge \gamma) = \left(\iota_X\beta\right) \wedge \gamma + (-1)^p \beta \wedge \left(\iota_X\gamma\right). }[/math] The above relation says that the interior product obeys a graded Leibniz rule. An operation satisfying linearity and a Leibniz rule is called a derivation.

Properties

If in local coordinates [math]\displaystyle{ (x_1,...,x_n) }[/math] the vector field [math]\displaystyle{ X }[/math] is given by

[math]\displaystyle{ X = f_1 \frac{\partial}{\partial x_1} + \cdots + f_r \frac{\partial}{\partial x_r} }[/math]

then the interior product is given by [math]\displaystyle{ \iota_X (dx_1 \wedge ...\wedge dx_n) = \sum_{r=1}^{n}(-1)^{r-1}f_r dx_1 \wedge ...\wedge \widehat{dx_r} \wedge ... \wedge dx_n, }[/math] where [math]\displaystyle{ dx_1\wedge ...\wedge \widehat{dx_r} \wedge ... \wedge dx_n }[/math] is the form obtained by omitting [math]\displaystyle{ dx_r }[/math] from [math]\displaystyle{ dx_1 \wedge ...\wedge dx_n }[/math].

By antisymmetry of forms, [math]\displaystyle{ \iota_X \iota_Y \omega = - \iota_Y \iota_X \omega, }[/math] and so [math]\displaystyle{ \iota_X \circ \iota_X = 0. }[/math] This may be compared to the exterior derivative [math]\displaystyle{ d, }[/math] which has the property [math]\displaystyle{ d \circ d = 0. }[/math]

The interior product relates the exterior derivative and Lie derivative of differential forms by the Cartan formula (also known as the Cartan identity, Cartan homotopy formula[2] or Cartan magic formula): [math]\displaystyle{ \mathcal L_X\omega = d(\iota_X \omega) + \iota_X d\omega = \left\{ d, \iota_X \right\} \omega. }[/math]

where the anticommutator was used. This identity defines a duality between the exterior and interior derivatives. Cartan's identity is important in symplectic geometry and general relativity: see moment map.[3] The Cartan homotopy formula is named after Élie Cartan.[4]

The interior product with respect to the commutator of two vector fields [math]\displaystyle{ X, }[/math] [math]\displaystyle{ Y }[/math] satisfies the identity [math]\displaystyle{ \iota_{[X,Y]} = \left[\mathcal{L}_X, \iota_Y\right]. }[/math]

See also

Notes

  1. The character ⨼ is U+2A3C INTERIOR PRODUCT in Unicode
  2. Tu, Sec 20.5.
  3. There is another formula called "Cartan formula". See Steenrod algebra.
  4. Is "Cartan's magic formula" due to Élie or Henri?, MathOverflow, 2010-09-21, https://mathoverflow.net/q/39540, retrieved 2018-06-25 

References

  • Theodore Frankel, The Geometry of Physics: An Introduction; Cambridge University Press, 3rd ed. 2011
  • Loring W. Tu, An Introduction to Manifolds, 2e, Springer. 2011. doi:10.1007/978-1-4419-7400-6