K-distribution

From HandWiki
Short description: Three-parameter family of continuous probability distributions
K-distribution
Parameters [math]\displaystyle{ \mu \in (0, +\infty) }[/math], [math]\displaystyle{ \alpha \in [0, +\infty) }[/math], [math]\displaystyle{ \beta \in [0, +\infty) }[/math]
Support [math]\displaystyle{ x \in [0, +\infty)\; }[/math]
PDF [math]\displaystyle{ \frac{2}{\Gamma(\alpha)\Gamma(\beta)} \, \left( \frac{\alpha \beta}{\mu} \right)^{\frac{\alpha + \beta}{2}} \, x^{ \frac{\alpha + \beta}{2} - 1} K_{\alpha - \beta} \left( 2 \sqrt{\frac{\alpha \beta x}{\mu}} \right), }[/math]
Mean [math]\displaystyle{ \mu }[/math]
Variance [math]\displaystyle{ \mu^2 \frac{\alpha+\beta+1}{\alpha \beta} }[/math]
MGF [math]\displaystyle{ \left(\frac{\xi}{s}\right)^{\beta/2} \exp \left( \frac{\xi}{2s} \right) W_{-\delta/2,\gamma/2} \left(\frac{\xi}{s}\right) }[/math]

In probability and statistics, the generalized K-distribution is a three-parameter family of continuous probability distributions. The distribution arises by compounding two gamma distributions. In each case, a re-parametrization of the usual form of the family of gamma distributions is used, such that the parameters are:

  • the mean of the distribution,
  • the usual shape parameter.

K-distribution is a special case of variance-gamma distribution, which in turn is a special case of generalised hyperbolic distribution. A simpler special case of the generalized K-distribution is often referred as the K-distribution.

Density

Suppose that a random variable [math]\displaystyle{ X }[/math] has gamma distribution with mean [math]\displaystyle{ \sigma }[/math] and shape parameter [math]\displaystyle{ \alpha }[/math], with [math]\displaystyle{ \sigma }[/math] being treated as a random variable having another gamma distribution, this time with mean [math]\displaystyle{ \mu }[/math] and shape parameter [math]\displaystyle{ \beta }[/math]. The result is that [math]\displaystyle{ X }[/math] has the following probability density function (pdf) for [math]\displaystyle{ x\gt 0 }[/math]:[1]

[math]\displaystyle{ f_X(x; \mu, \alpha, \beta)= \frac{2}{\Gamma(\alpha)\Gamma(\beta)} \, \left( \frac{\alpha \beta}{\mu} \right)^{\frac{\alpha + \beta}{2}} \, x^{ \frac{\alpha + \beta}{2} - 1} K_{\alpha - \beta} \left( 2 \sqrt{\frac{\alpha \beta x}{\mu}} \right), }[/math]

where [math]\displaystyle{ K }[/math] is a modified Bessel function of the second kind. Note that for the modified Bessel function of the second kind, we have [math]\displaystyle{ K_{\nu} = K_{-\nu} }[/math]. In this derivation, the K-distribution is a compound probability distribution. It is also a product distribution:[1] it is the distribution of the product of two independent random variables, one having a gamma distribution with mean 1 and shape parameter [math]\displaystyle{ \alpha }[/math], the second having a gamma distribution with mean [math]\displaystyle{ \mu }[/math] and shape parameter [math]\displaystyle{ \beta }[/math].

A simpler two parameter formalization of the K-distribution can be obtained by setting [math]\displaystyle{ \beta = 1 }[/math] as[2][3]

[math]\displaystyle{ f_X(x; b, v)= \frac{2b}{\Gamma(v)} \left( \sqrt{bx} \right)^{v-1} K_{v-1} (2 \sqrt{bx} ), }[/math]

where [math]\displaystyle{ v = \alpha }[/math] is the shape factor, [math]\displaystyle{ b = \alpha/\mu }[/math] is the scale factor, and [math]\displaystyle{ K }[/math] is the modified Bessel function of second kind. The above two parameter formalization can also be obtained by setting [math]\displaystyle{ \alpha = 1 }[/math], [math]\displaystyle{ v = \beta }[/math], and [math]\displaystyle{ b = \beta/\mu }[/math], albeit with different physical interpretation of [math]\displaystyle{ b }[/math] and [math]\displaystyle{ v }[/math] parameters. This two parameter formalization is often referred to as the K-distribution, while the three parameter formalization is referred to as the generalized K-distribution.

This distribution derives from a paper by Eric Jakeman and Peter Pusey (1978) who used it to model microwave sea echo.[4] Jakeman and Tough (1987) derived the distribution from a biased random walk model.[5] Keith D. Ward (1981) derived the distribution from the product for two random variables, z = a y, where a has a chi distribution and y a complex Gaussian distribution. The modulus of z, |z|, then has K-distribution.[6]

Moments

The moment generating function is given by[7]

[math]\displaystyle{ M_X(s) = \left(\frac{\xi}{s}\right)^{\beta/2} \exp \left( \frac{\xi}{2s} \right) W_{-\delta/2,\gamma/2} \left(\frac{\xi}{s}\right), }[/math]

where [math]\displaystyle{ \gamma = \beta - \alpha, }[/math] [math]\displaystyle{ \delta = \alpha + \beta - 1, }[/math] [math]\displaystyle{ \xi = \alpha \beta/\mu, }[/math] and [math]\displaystyle{ W_{-\delta/2,\gamma/2}(\cdot) }[/math] is the Whittaker function.

The n-th moments of K-distribution is given by[1]

[math]\displaystyle{ \mu_n = \xi^{-n} \frac{\Gamma(\alpha+n)\Gamma(\beta+n)}{\Gamma(\alpha)\Gamma(\beta)}. }[/math]

So the mean and variance are given by[1]

[math]\displaystyle{ \operatorname{E}(X)= \mu }[/math]
[math]\displaystyle{ \operatorname{var}(X)= \mu^2 \frac{\alpha+\beta+1}{\alpha \beta} . }[/math]

Other properties

All the properties of the distribution are symmetric in [math]\displaystyle{ \alpha }[/math] and [math]\displaystyle{ \beta. }[/math][1]

Applications

K-distribution arises as the consequence of a statistical or probabilistic model used in synthetic-aperture radar (SAR) imagery. The K-distribution is formed by compounding two separate probability distributions, one representing the radar cross-section, and the other representing speckle that is a characteristic of coherent imaging. It is also used in wireless communication to model composite fast fading and shadowing effects.

Notes

Sources

Further reading

  • Jakeman, Eric (1980-01-01). "On the statistics of K-distributed noise". Journal of Physics A: Mathematical and General (IOP Publishing) 13 (1): 31–48. doi:10.1088/0305-4470/13/1/006. ISSN 0305-4470. 
  • Ward, Keith D.; Tough, Robert J. A; Watts, Simon (2006) Sea Clutter: Scattering, the K Distribution and Radar Performance, Institution of Engineering and Technology. ISBN:0-86341-503-2.