List of formulas in elementary geometry

From HandWiki
Short description: none

This is a short list of some common mathematical shapes and figures and the formulas that describe them.

Two-dimensional shapes

Shape Area Perimeter/Circumference Meanings of symbols
Square [math]\displaystyle{ l^2 }[/math] [math]\displaystyle{ 4l }[/math] [math]\displaystyle{ l }[/math] is the length of a side
Rectangle [math]\displaystyle{ lb }[/math] [math]\displaystyle{ 2(l+b) }[/math] [math]\displaystyle{ l }[/math] is length, [math]\displaystyle{ b }[/math] is breadth
Circle [math]\displaystyle{ \pi r^2 }[/math] [math]\displaystyle{ 2\pi r }[/math] or [math]\displaystyle{ \pi d }[/math] where [math]\displaystyle{ r }[/math] is the radius and [math]\displaystyle{ d }[/math] is the diameter
Ellipse [math]\displaystyle{ \pi ab }[/math] where [math]\displaystyle{ a }[/math] is the semimajor axis and [math]\displaystyle{ b }[/math] is the semiminor axis
Triangle [math]\displaystyle{ \frac{bh}{2} }[/math] [math]\displaystyle{ a+b+c }[/math] [math]\displaystyle{ b }[/math] is base; [math]\displaystyle{ h }[/math] is height; [math]\displaystyle{ a,b,c }[/math] are sides
Parallelogram [math]\displaystyle{ bh }[/math] [math]\displaystyle{ 2(a+b) }[/math] [math]\displaystyle{ b }[/math] is base, [math]\displaystyle{ h }[/math] is height, [math]\displaystyle{ a }[/math] is side
Trapezoid [math]\displaystyle{ \frac{a+b}{2}h }[/math] [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] are the bases
Sources:[1][2][3]

Three-dimensional shapes

Illustration of the shapes' equation terms
Cube
Cuboid
Prism
Parallelepiped
Pyramids
Tetrahedron
Cone
Cylinder
Sphere
Ellipsoid

This is a list of volume formulas of basic shapes:[4](pp405–406)

  • Cone[math]\displaystyle{ \frac{1}{3}\pi r^2 h }[/math], where [math]\displaystyle{ r }[/math] is the base's radius
  • Cube[math]\displaystyle{ a^3 }[/math], where [math]\displaystyle{ a }[/math] is the side's length;
  • Cuboid[math]\displaystyle{ abc }[/math], where [math]\displaystyle{ a }[/math], [math]\displaystyle{ b }[/math], and [math]\displaystyle{ c }[/math] are the sides' length;
  • Cylinder[math]\displaystyle{ \pi r^2 h }[/math], where [math]\displaystyle{ r }[/math] is the base's radius and [math]\displaystyle{ h }[/math] is the cone's height;
  • Ellipsoid[math]\displaystyle{ \frac{4}{3}\pi abc }[/math], where [math]\displaystyle{ a }[/math], [math]\displaystyle{ b }[/math], and [math]\displaystyle{ c }[/math] are the semi-major and semi-minor axes' length;
  • Sphere[math]\displaystyle{ \frac{4}{3}\pi r^3 }[/math], where [math]\displaystyle{ r }[/math] is the radius;
  • Parallelepiped[math]\displaystyle{ abc\sqrt{K} }[/math], where [math]\displaystyle{ a }[/math], [math]\displaystyle{ b }[/math], and [math]\displaystyle{ c }[/math] are the sides' length,[math]\displaystyle{ K = 1 + 2\cos(\alpha)\cos(\beta)\cos(\gamma) - \cos^2(\alpha) - \cos^2(\beta) - \cos^2(\gamma) }[/math], and [math]\displaystyle{ \alpha }[/math], [math]\displaystyle{ \beta }[/math], and [math]\displaystyle{ \gamma }[/math] are angles between the two sides;
  • Prism[math]\displaystyle{ Bh }[/math], where [math]\displaystyle{ B }[/math] is the base's area and [math]\displaystyle{ h }[/math] is the prism's height;
  • Pyramid[math]\displaystyle{ \frac{1}{3}Bh }[/math], where [math]\displaystyle{ B }[/math] is the base's area and [math]\displaystyle{ h }[/math] is the pyramid's height;
  • Tetrahedron[math]\displaystyle{ {\sqrt{2}\over12}a^3 }[/math], where [math]\displaystyle{ a }[/math] is the side's length.

Sphere

The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables

  • [math]\displaystyle{ r }[/math] is the radius,
  • [math]\displaystyle{ C = 2 \pi r }[/math] is the circumference (the length of any one of its great circles),
  • [math]\displaystyle{ S }[/math] is the surface area,
  • [math]\displaystyle{ V }[/math] is the volume.

Surface area:

[math]\displaystyle{ \begin{alignat}{4} S &= 4 \pi r^2 \\[0.3ex] &= \frac{1}{\pi} C^2 \\[0.3ex] &= \sqrt[3]{\pi (6 V)^2} \\[0.3ex] \end{alignat} }[/math]

Volume:

[math]\displaystyle{ \begin{alignat}{4} V &= \frac{4}{3} \pi r^3 \\[0.3ex] &= \frac{1}{6 \pi^2} C^3 \\[0.3ex] &= \frac{1}{6 \sqrt{\pi}} S^{3/2} \\[0.3ex] \end{alignat} }[/math]

Radius:

[math]\displaystyle{ \begin{alignat}{4} r &= \frac{1}{2 \pi} C \\[0.3ex] &= \sqrt{\frac{1}{4 \pi} S} \\[0.3ex] &= \sqrt[3]{\frac{3}{4 \pi} V} \\[0.3ex] \end{alignat} }[/math]

Circumference:

[math]\displaystyle{ \begin{alignat}{4} C &= 2 \pi r \\[0.3ex] &= \sqrt{\pi S} \\[0.3ex] &= \sqrt[3]{\pi^2 6 V} \\[0.3ex] \end{alignat} }[/math]

See also

References