List of spirals

From HandWiki

This list of spirals includes named spirals that have been described mathematically.

Image Name First described Equation Comment
Circle - black simple.svg
circle [math]\displaystyle{ r= k }[/math] The trivial spiral
Archimedean spiral.svg
Archimedean spiral (also arithmetic spiral) -300 c. 320 BC [math]\displaystyle{ r=a+b \cdot \theta }[/math]
Fermat's spiral.svg
Fermat's spiral (also parabolic spiral) 1636[1] [math]\displaystyle{ r^{2} = a^{2} \cdot \theta }[/math]
Cornu Spiral.svg
Euler spiral (also Cornu spiral or polynomial spiral) 1696[2] [math]\displaystyle{ x(t) = \operatorname{C}(t),\, }[/math][math]\displaystyle{ y(t) = \operatorname{S}(t) }[/math] using Fresnel integrals[3]
Hyperspiral.svg
hyperbolic spiral (also reciprocal spiral) 1704 [math]\displaystyle{ r = \frac{a}{\theta} }[/math]
Lituus.svg
lituus 1722 [math]\displaystyle{ r^{2} \cdot \theta = k }[/math]
Logarithmic Spiral Pylab.svg
logarithmic spiral (also known as equiangular spiral) 1638[4] [math]\displaystyle{ r=a\cdot e^{b \cdot \theta} }[/math] Approximations of this are found in nature
Fibonacci spiral.svg
Fibonacci spiral circular arcs connecting the opposite corners of squares in the Fibonacci tiling approximation of the golden spiral
Golden spiral in rectanglesflip.png
golden spiral [math]\displaystyle{ r = \varphi^{\frac{2 \cdot \theta}{\pi}}\, }[/math] special case of the logarithmic spiral
Spiral of Theodorus.svg
Spiral of Theodorus (also known as Pythagorean spiral) c. 500 BC contiguous right triangles composed of one leg with unit length and the other leg being the hypotenuse of the prior triangle approximates the Archimedean spiral
Involute of circle.png
involute 1673 [math]\displaystyle{ x(t)=r(\cos(t+a)+t\sin(t+a)), }[/math]

[math]\displaystyle{ y(t)=r(\sin(t+a)-t \cos(t+a)) }[/math]

involutes of a circle appear like Archimedean spirals
Helix.svg
helix [math]\displaystyle{ r(t) = 1,\, }[/math] [math]\displaystyle{ \theta(t) = t,\, }[/math] [math]\displaystyle{ z(t) = t }[/math] a 3-dimensional spiral
Loxodrome.png
Rhumb line (also loxodrome) type of spiral drawn on a sphere
Epi half spirals.svg
Cotes's spiral 1722 [math]\displaystyle{ \frac{1}{r} = \begin{cases} A \cosh(k\theta + \varepsilon) \\ A \exp(k\theta + \varepsilon) \\ A \sinh(k\theta + \varepsilon) \\ A (k\theta + \varepsilon) \\ A \cos(k\theta + \varepsilon) \\ \end{cases} }[/math] Solution to the two-body problem for an inverse-cube central force
PoinsotSpiral.svg
Poinsot's spirals [math]\displaystyle{ r = a \cdot \operatorname{csch}(n \cdot \theta),\, }[/math]
[math]\displaystyle{ r = a \cdot \operatorname{sech}(n \cdot \theta) }[/math]
Nielsen's spiral.png
Nielsen's spiral 1993[5] [math]\displaystyle{ x(t) = \operatorname{ci}(t),\, }[/math]
[math]\displaystyle{ y(t) = \operatorname{si}(t) }[/math]
A variation of Euler spiral, using sine integral and cosine integrals
Polygon spiral.png
Polygonal spiral special case approximation of logarithmic spiral
Fraser spiral.svg
Fraser's Spiral 1908 Optical illusion based on spirals
Conchospiral.svg
Conchospiral [math]\displaystyle{ r = \mu^{t} \cdot a,\, }[/math][math]\displaystyle{ \theta = t,\, }[/math][math]\displaystyle{ z = \mu^{t} \cdot c }[/math] three-dimensional spiral on the surface of a cone.
Calkin-Wilf spiral.svg
Calkin–Wilf spiral
Ulam spiral howto all numbers.svg
Ulam spiral (also prime spiral) 1963
Sacks spiral.svg
Sack's spiral 1994 variant of Ulam spiral and Archimedean spiral.
Seiffert's spiral 2000[6] [math]\displaystyle{ r = \operatorname{sn}(s, k),\, }[/math][math]\displaystyle{ \theta = k \cdot s }[/math][math]\displaystyle{ z = \operatorname{cn}(s, k) }[/math] spiral curve on the surface of a sphere

using the Jacobi elliptic functions[7]

Tractrix Spiral.svg
Tractrix spiral 1704[8] [math]\displaystyle{ \begin{cases} r = A \cos(t) \\ \theta = \tan(t ) -t\end{cases} }[/math]
Pappus spiral 1779 [math]\displaystyle{ \begin{cases} r=a \theta \\ \psi = k \end{cases} }[/math] 3D conical spiral studied by Pappus and Pascal[9]
Doppler spiral.svg
doppler spiral [math]\displaystyle{ x = a \cdot ( t \cdot \cos(t) + k \cdot t),\, }[/math][math]\displaystyle{ y = a \cdot t \cdot \sin(t) }[/math] 2D projection of Pappus spiral[10]
Atzema spiral.svg
Atzema spiral [math]\displaystyle{ x = \frac{\sin(t)}{t} - 2 \cdot \cos(t) - t \cdot \sin(t),\, }[/math][math]\displaystyle{ y = -\frac{\cos(t)}{t} - 2 \cdot \sin(t) + t \cdot \cos(t) }[/math] The curve that has a catacaustic forming a circle. Approximates the Archimedean spiral.[11]
AtomicSpiral.svg
Atomic spiral 2002 [math]\displaystyle{ r = \frac{\theta}{\theta - a} }[/math] This spiral has two asymptotes; one is the circle of radius 1 and the other is the line [math]\displaystyle{ \theta=a }[/math][12]
Galaxy NGC1079.jpg
Galactic spiral 2019 [math]\displaystyle{ \begin{cases} dx=R \cdot \frac{y}{\sqrt{x^2 +y^2}} d\theta \\ dy=R \cdot \left[\rho(\theta)- \frac{x}{\sqrt{x^2+y^2}} \right] d\theta \end{cases} \begin{cases} x= \sum dx \\ \\ \\ y= \sum dy + R \end{cases} }[/math] The differential spiral equations were developed to simulate the spiral arms of disc galaxies, have 4 solutions with three different cases:[math]\displaystyle{ \rho \lt 1, \rho = 1, \rho \gt 1 }[/math], the spiral patterns are decided by the behavior of the parameter [math]\displaystyle{ \rho }[/math]. For [math]\displaystyle{ \rho \lt 1 }[/math], spiral-ring pattern; [math]\displaystyle{ \rho = 1, }[/math] regular spiral; [math]\displaystyle{ \rho \gt 1, }[/math] loose spiral. R is the distance of spiral starting point (0, R) to the center. The calculated x and y have to be rotated backward by ([math]\displaystyle{ -\theta }[/math]) for plotting.[13]

See also

References