Medicine:Medical error

From HandWiki
Short description: Preventable adverse effect of medical care


A medical error is a preventable adverse effect of care ("iatrogenesis"), whether or not it is evident or harmful to the patient. This might include an inaccurate or incomplete diagnosis or treatment of a disease, injury, syndrome, behavior, infection, or other ailment.

Definitions

The word error in medicine is used as a label for nearly all of the clinical incidents that harm patients. Medical errors are often described as human errors in healthcare.[1] Whether the label is a medical error or human error, one definition used in medicine says that it occurs when a healthcare provider chooses an inappropriate method of care, improperly executes an appropriate method of care, or reads the wrong CT scan. It has been said that the definition should be the subject of more debate. For instance, studies of hand hygiene compliance of physicians in an ICU show that compliance varied from 19% to 85%.[2][needs update] The deaths that result from infections caught as a result of treatment providers improperly executing an appropriate method of care by not complying with known safety standards for hand hygiene are difficult to regard as innocent accidents or mistakes.

There are many types of medical error, from minor to major,[3] and causality is often poorly determined.[4][needs update]

There are many taxonomies for classifying medical errors.[5]

Definitions of diagnostic error

There is no single definition of diagnostic error, reflecting in part the dual nature of the word diagnosis, which is both a noun (the name of the assigned disease; diagnosis is a label) and a verb (the act of arriving at a diagnosis; diagnosis is a process). At the present time, there are at least 4 definitions of diagnostic error in active use:

Graber et al. defined diagnostic error as a diagnosis that is wrong, egregiously delayed, or missed altogether.[6] This is a 'label' definition, and can only be applied in retrospect, using some gold standard (for example, autopsy findings or a definitive laboratory test) to confirm the correct diagnosis. Many diagnostic errors fit several of these criteria; the categories overlap.

There are two process-related definitions: Schiff et al. defined diagnostic error as any breakdown in the diagnostic process, including both errors of omission and errors of commission.[7] Similarly, Singh et al. defined diagnostic error as a 'missed opportunity' in the diagnostic process, based on retrospective review.[8]

In its landmark report, Improving Diagnosis in Health Care, The National Academy of Medicine proposed a new, hybrid definition that includes both label- and process-related aspects: "A diagnostic error is failure to establish an accurate and timely explanation of the patient's health problem(s) or to communicate that explanation to the patient."[9] This is the only definition that specifically includes the patient in the definition wording.

Impact

A 2000 Institute of Medicine report estimated that medical errors result in between 44,000 and 98,000 preventable deaths and 1,000,000 excess injuries each year in U.S. hospitals.[10][11][12] In the UK, a 2000 study found that an estimated 850,000 medical errors occur each year, costing over £2 billion.[13]

Some researchers questioned the accuracy of the IOM study, criticizing the statistical handling of measurement errors in the report,[14] significant subjectivity in determining which deaths were "avoidable" or due to medical error, and an erroneous assumption that 100% of patients would have survived if optimal care had been provided.[15] A 2001 study in the Journal of the American Medical Association of seven Department of Veterans Affairs medical centers estimated that for roughly every 10,000 patients admitted to the select hospitals, one patient died who would have lived for three months or more in good cognitive health had "optimal" care been provided.[15]

A 2006 follow-up to the IOM study found that medication errors are among the most common medical mistakes, harming at least 1.5 million people every year. According to the study, 400,000 preventable drug-related injuries occur each year in hospitals, 800,000 in long-term care settings, and roughly 530,000 among Medicare recipients in outpatient clinics. The report stated that these are likely to be conservative estimates. In 2000 alone, the extra medical costs incurred by preventable drug-related injuries approximated $887 million—and the study looked only at injuries sustained by Medicare recipients, a subset of clinic visitors. None of these figures take into account lost wages and productivity or other costs.[16]

According to a 2002 Agency for Healthcare Research and Quality report, about 7,000 people were estimated to die each year from medication errors – about 16 percent more deaths than the number attributable to work-related injuries (6,000 deaths). Medical errors affect one in 10 patients worldwide. One extrapolation suggests that 180,000 people die each year partly as a result of iatrogenic injury.[17] One in five Americans (22%) report that they or a family member have experienced a medical error of some kind.[18]

The World Health Organization registered 14 million new cases and 8.2 million cancer-related deaths in 2012. It estimated that the number of cases could increase by 70% through 2032. As the number of cancer patients receiving treatment increases, hospitals around the world are seeking ways to improve patient safety, to emphasize traceability and raise efficiency in their cancer treatment processes.[19]

Difficulties in measuring frequency of errors

About 1% of hospital admissions result in an adverse event due to negligence.[20] However, mistakes are likely much more common, as these studies identify only mistakes that led to measurable adverse events occurring soon after the errors. Independent review of doctors' treatment plans suggests that decision-making could be improved in 14% of admissions; many of the benefits would have delayed manifestations.[21] Even this number may be an underestimate. One study suggests that adults in the United States receive only 55% of recommended care.[22] At the same time, a second study found that 30% of care in the United States may be unnecessary.[23] For example, if a doctor fails to order a mammogram that is past due, this mistake will not show up in the first type of study.[20] In addition, because no adverse event occurred during the short follow-up of the study, the mistake also would not show up in the second type of study[21] because only the principal treatment plans were critiqued. However, the mistake would be recorded in the third type of study. If a doctor recommends an unnecessary treatment or test, it may not show in any of these types of studies.

Cause of death on United States death certificates, statistically compiled by the Centers for Disease Control and Prevention (CDC), are coded in the International Classification of Disease (ICD), which does not include codes for human and system factors.[24][25]

Causes

The research literature showed that medical errors are caused by errors of commission and errors of omission.[26] Errors of omission are made when providers did not take action when they should have, while errors of commission occur when decisions and action are delayed.[26] Commission and omission errors have also been attributed with communication failures.[27][28]

Medical errors can be associated with inexperienced physicians and nurses, new procedures, extremes of age, and complex or urgent care.[29] Poor communication (whether in one's own language or, as may be the case for medical tourists, another language), improper documentation, illegible handwriting, spelling errors, inadequate nurse-to-patient ratios, and similarly named medications are also known to contribute to the problem.[30][31] Misdiagnosis may be associated with individual characteristics of the patient or due to the patient multimorbidity.[32][33] Patient actions or inactions may also contribute significantly to medical errors.[28][27]

Healthcare complexity

Complicated technologies,[34][35] powerful drugs, intensive care, rare and multiple diseases,[36] and prolonged hospital stay can contribute to medical errors.[37]

Complexity makes diagnosis especially challenging. There are less than 200 symptoms listed in Wikipedia,[38] but there are probably more than 10,000 known diseases. The World Health Organization's system for the International Classification of Disease, 9th Edition from 1979 listed over 14,000 diagnosis codes.[39] Textbooks of medicine often describe the most typical presentations of a disease, but in many conditions patients may have variable presentations instead of the classical signs and symptoms. To add complexity, the signs and symptoms of a given condition change over time; in the early stages the signs and symptoms may be absent or minimal, and then these evolve as the condition progresses. Diagnosis is often challenging in infants and children who can't clearly communicate their symptoms, and in the elderly, where signs and symptoms may be muted or absent.[40]

There are more than 7000 rare diseases alone, and in aggregate these are not uncommon: Roughly 1 in 17 patients will be diagnosed with a rare disease over their lifetime.[41] Physicians may have only learned a handful of these during their education and training.

System and process design

In 2000, The Institute of Medicine released "To Err is Human," which asserted that the problem in medical errors is not bad people in health care—it is that good people are working in bad systems that need to be made safer.[10]

Poor communication and unclear lines of authority of physicians, nurses, and other care providers are also contributing factors.[42] Disconnected reporting systems within a hospital can result in fragmented systems in which numerous hand-offs of patients results in lack of coordination and errors.[43]

Other factors include the impression that action is being taken by other groups within the institution, reliance on automated systems to prevent error.,[44] and inadequate systems to share information about errors, which hampers analysis of contributory causes and improvement strategies.[45] Cost-cutting measures by hospitals in response to reimbursement cutbacks can compromise patient safety.[46] In emergencies, patient care may be rendered in areas poorly suited for safe monitoring. The American Institute of Architects has identified concerns for the safe design and construction of health care facilities.[47] Infrastructure failure is also a concern. According to the WHO, 50% of medical equipment in developing countries is only partly usable due to lack of skilled operators or parts. As a result, diagnostic procedures or treatments cannot be performed, leading to substandard treatment.

The Joint Commission's Annual Report on Quality and Safety 2007 found that inadequate communication between healthcare providers, or between providers and the patient and family members, was the root cause of over half the serious adverse events in accredited hospitals.[48] Other leading causes included inadequate assessment of the patient's condition, and poor leadership or training.

Competency, education, and training

Variations in healthcare provider training & experience[42][49] and failure to acknowledge the prevalence and seriousness of medical errors also increase the risk.[50][51] The so-called July effect occurs when new residents arrive at teaching hospitals, causing an increase in medication errors according to a study of data from 1979 to 2006.[52][53]

Human factors and ergonomics

A plate written in a hospital, containing drugs that are similar in spelling or writing

Cognitive errors commonly encountered in medicine were initially identified by psychologists Amos Tversky and Daniel Kahneman in the early 1970s. Jerome Groopman, author of How Doctors Think, says these are "cognitive pitfalls", biases which cloud our logic. For example, a practitioner may overvalue the first data encountered, skewing their thinking. Another example may be where the practitioner recalls a recent or dramatic case that quickly comes to mind, coloring the practitioner's judgement. Another pitfall is where stereotypes may prejudice thinking.[54] Pat Croskerry describes clinical reasoning as an interplay between intuitive, subconscious thought (System 1) and deliberate, conscious rational consideration (System 2). In this framework, many cognitive errors reflect over-reliance on System 1 processing, although cognitive errors may also sometimes involve System 2.[55]

Sleep deprivation has also been cited as a contributing factor in medical errors.[13] One study found that being awake for over 24 hours caused medical interns to double or triple the number of preventable medical errors, including those that resulted in injury or death.[56] The risk of car crash after these shifts increased by 168%, and the risk of near miss by 460%.[57] Interns admitted falling asleep during lectures, during rounds, and even during surgeries.[57] Night shifts are associated with worse surgeon performance during laparoscopic surgeries.[13]

Practitioner risk factors include fatigue,[58][59][60] depression,[61] and burnout.[62] Factors related to the clinical setting include diverse patients, unfamiliar settings, time pressures, and increased patient-to-nurse staffing ratio increases.[63] Drug names that look alike or sound alike are also a problem.[64]

Errors in interpreting medical images are often perceptual instead of "fact-based"; these errors are often caused by failures of attention or vision.[65] For example, visual illusions can cause radiologists to misperceive images.[66]

A number of Information Technology (IT) systems have been developed to detect and prevent medication errors, the most common type of medical errors.[67] These systems screen data such as ICD-9 codes, pharmacy and laboratory data. Rules are used to look for changes in medication orders, and abnormal laboratory results that may be indicative of medication errors and/or adverse drug events.[68]

Examples

Errors can include misdiagnosis or delayed diagnosis, administration of the wrong drug to the wrong patient or in the wrong way, giving multiple drugs that interact negatively, surgery on an incorrect site, failure to remove all surgical instruments, failure to take the correct blood type into account, or incorrect record-keeping. A 10th type of error is ones which are not watched for by researchers, such as RNs failing to program an IV pump to give a full dose of IV antibiotics or other medication.

Errors in diagnosis

According to a 2016 study from Johns Hopkins Medicine, medical errors are the third-leading cause of death in the United States.[69] The projected cost of these errors to the U.S. economy is approximately $20 billion, 87% of which are direct increases in medical costs of providing services to patient affected by medical errors.[70] Medical errors can increase average hospital costs by as much as $4,769 per patient.[71] One common type of medical error stems from x-rays and medical imaging: failing to see or notice signs of disease on an image.[65] The retrospective "miss" rate among abnormal imaging studies is reported to be as high as 30% (the real-life error rate is much lower, around 4-5%, because not all images are abnormal),[72] and up to 20% of missed findings result in long-term adverse effects.[73][74]

A large study reported several cases where patients were wrongly told that they were HIV-negative when the physicians erroneously ordered and interpreted HTLV (a closely related virus) testing rather than HIV testing. In the same study, >90% of HTLV tests were ordered erroneously.[75] It is estimated that between 10 and 15% of physician diagnoses are erroneous.[76]

Misdiagnosis of lower extremity cellulitis is estimated to occur in 30% of patients, leading to unnecessary hospitalizations in 85% and unnecessary antibiotic use in 92%. Collectively, these errors lead to between 50,000 and 130,000 unnecessary hospitalizations and between $195 and $515 million in avoidable health care spending annually in the United States.[77]

Misdiagnosis of psychological disorders

Female sexual desire sometimes used to be diagnosed as female hysteria.

Sensitivities to foods and food allergies risk being misdiagnosed as the anxiety disorder Orthorexia.

Studies have found that bipolar disorder has often been misdiagnosed as major depression. Its early diagnosis necessitates that clinicians pay attention to the features of the patient's depression and also look for present or prior hypomanic or manic symptomatology.[78]

The misdiagnosis of schizophrenia is also a common problem. There may be long delays of patients getting a correct diagnosis of this disorder.[79]

Delayed sleep phase disorder is often confused with: psychophysiological insomnia; depression; psychiatric disorders such as schizophrenia, ADHD or ADD; other sleep disorders; or school refusal. Practitioners of sleep medicine point out the dismally low rate of accurate diagnosis of the disorder, and have often asked for better physician education on sleep disorders.[80]

Cluster headaches are often misdiagnosed, mismanaged, or undiagnosed for many years; they may be confused with migraine, "cluster-like" headache (or mimics), CH subtypes, other TACs ( trigeminal autonomic cephalalgias), or other types of primary or secondary headache syndrome.[81] Cluster-like head pain may be diagnosed as secondary headache rather than cluster headache.[82] Under-recognition of CH by health care professionals is reflected in consistent findings in Europe and the United States that the average time to diagnosis is around seven years.[83]

Asperger syndrome and autism tend to get undiagnosed or delayed recognition and delayed diagnosis[84][85] or misdiagnosed.[86] Delayed or mistaken diagnosis can be traumatic for individuals and families; for example, misdiagnosis can lead to medications that worsen behavior.[87][88]

The DSM-5 field trials included "test-retest reliability" which involved different clinicians doing independent evaluations of the same patient—a new approach to the study of diagnostic reliability.[89]

Outpatient vs. inpatient

Misdiagnosis is the leading cause of medical error in outpatient facilities. Since the National Institute of Medicine's 1999 report, "To Err is Human," found up to 98,000 hospital patients die from preventable medical errors in the U.S. each year, government and private sector efforts have focused on inpatient safety.

Medical prescriptions

Main page: Medicine:Medical prescription

While in 2000 the Committee on Quality of Health Care in America in 2000 affirmed medical are an "unavoidable outcome of learning to practice medicine",[90] at 2019 the commonly accepted link between prescribing skills and clinical clerkships was not yet demonstrated by the available data[91] and in the U.S. legibility of handwritten prescriptions has been indirectly responsible for at least 7,000 deaths annually.[92]

Prescription errors concern ambiguous abbreviations, the right spelling of the full name of drugs: improper use of the nomenclature, of decimal points, unit or rate expressions; legibility and proper instructions; miscalculations of the posology (quantity, route and frequency of administration, duration of the treatment, dosage form and dosage strength); lack of information about patients (e.g. allergy, declining renal function) or reported in the medical document.[91] There were an estimated 66 million clinically significant medication errors in the British NHS in 2018. The resulting adverse drug reactions are estimated to cause around 700 deaths a year in England and to contribute to around 22,000 deaths a year. The British researchers did not find any evidence that error rates were lower in other countries, and the global cost was estimated at $42 billion per year.[93]

Medication errors in hospital include omissions, delayed dosing and incorrect medication administrations. Medication errors are not always readily identified, but can be reported using case note reviews or incident reporting systems.[94] There are pharmacist-led interventions that can reduce the incident of medication error.[95] Electronic prescribing has been shown to reduce prescribing errors by up to 30%.[96]

After an error has occurred

Mistakes can have a strongly negative emotional impact on the doctors who commit them.[97][98][99][100]

Recognizing that mistakes are not isolated events

Some physicians recognize that adverse outcomes from errors usually do not happen because of an isolated error and actually reflect system problems.[49] This concept is often referred to as the Swiss Cheese Model.[101] This is the concept that there are layers of protection for clinicians and patients to prevent mistakes from occurring. Therefore, even if a doctor or nurse makes a small error (e.g. incorrect dose of drug written on a drug chart by doctor), this is picked up before it actually affects patient care (e.g. pharmacist checks the drug chart and rectifies the error).[101] Such mechanisms include: Practical alterations (e.g.-medications that cannot be given through IV, are fitted with tubing which means they cannot be linked to an IV even if a clinician makes a mistake and tries to),[102] systematic safety processes (e.g. all patients must have a Waterlow score assessment and falls assessment completed on admission),[102] and training programmes/continuing professional development courses[102] are measures that may be put in place.

There may be several breakdowns in processes to allow one adverse outcome.[103] In addition, errors are more common when other demands compete for a physician's attention.[104][105][106] However, placing too much blame on the system may not be constructive.[49]

Placing the practice of medicine in perspective

Essayists imply that the potential to make mistakes is part of what makes being a physician rewarding and without this potential the rewards of medical practice would be diminished. Laurence states that "Everybody dies, you and all of your patients. All relationships end. Would you want it any other way? [...] Don't take it personally"[107] Seder states "[...] if I left medicine, I would mourn its loss as I've mourned the passage of my poetry. On a daily basis, it is both a privilege and a joy to have the trust of patients and their families and the camaraderie of peers. There is no challenge to make your blood race like that of a difficult case, no mind game as rigorous as the challenging differential diagnosis, and though the stakes are high, so are the rewards."[108]

Disclosing mistakes

Forgiveness, which is part of many cultural traditions, may be important in coping with medical mistakes.[109] Among other healing processes, it can be accomplished through the use of communicative disclosure guidelines.[110]

To oneself

Inability to forgive oneself may create a cycle of distress and increased likelihood of a future error.[111]

However, Wu et al. suggest "...those who coped by accepting responsibility were more likely to make constructive changes in practice, but [also] to experience more emotional distress."[112] It may be helpful to consider the much larger number of patients who are not exposed to mistakes and are helped by medical care.[108]

To patients

Gallagher et al. state that patients want "information about what happened, why the error happened, how the error's consequences will be mitigated, and how recurrences will be prevented."[113] Interviews with patients and families reported in a 2003 book by Rosemary Gibson and Janardan Prasad Singh, put forward that those who have been harmed by medical errors face a "wall of silence" and "want an acknowledgement" of the harm.[114] With honesty, "healing can begin not just for the patients and their families but also the doctors, nurses and others involved." In a line of experimental investigations, Annegret Hannawa et al. developed evidence-based disclosure guidelines under the scientific "Medical Error Disclosure Competence (MEDC)" framework.[110][115]

A 2005 study by Wendy Levinson of the University of Toronto showed surgeons discussing medical errors used the word "error" or "mistake" in only 57 percent of disclosure conversations and offered a verbal apology only 47 percent of the time.[116]

Patient disclosure is important in the medical error process. The current standard of practice at many hospitals is to disclose errors to patients when they occur. In the past, it was a common fear that disclosure to the patient would incite a malpractice lawsuit. Many physicians would not explain that an error had taken place, causing a lack of trust toward the healthcare community. In 2007, 34 states passed legislation that precludes any information from a physician's apology for a medical error from being used in malpractice court (even a full admission of fault).[117] This encourages physicians to acknowledge and explain mistakes to patients, keeping an open line of communication.

The American Medical Association's Council on Ethical and Judicial Affairs states in its ethics code:

"Situations occasionally occur in which a patient suffers significant medical complications that may have resulted from the physician's mistake or judgment. In these situations, the physician is ethically required to inform the patient of all facts necessary to ensure understanding of what has occurred. Concern regarding legal liability which might result following truthful disclosure should not affect the physician's honesty with a patient."

From the American College of Physicians Ethics Manual:[118]

"In addition, physicians should disclose to patients information about procedural or judgment errors made in the course of care if such information is material to the patient's well-being. Errors do not necessarily constitute improper, negligent, or unethical behavior, but failure to disclose them may."

However, "there appears to be a gap between physicians' attitudes and practices regarding error disclosure. Willingness to disclose errors was associated with higher training level and a variety of patient-centered attitudes, and it was not lessened by previous exposure to malpractice litigation".[119] Hospital administrators may share these concerns.[120]

Consequently, in the United States , many states have enacted laws excluding expressions of sympathy after accidents as proof of liability.

Disclosure may actually reduce malpractice payments.[121][122]

To non-physicians

In a study of physicians who reported having made a mistake, it was offered that disclosing to non-physician sources of support may reduce stress more than disclosing to physician colleagues.[123] This may be due to the finding that of the physicians in the same study, when presented with a hypothetical scenario of a mistake made by another colleague, only 32% of them would have unconditionally offered support. It is possible that greater benefit occurs when spouses are physicians.[124]

To other physicians

Discussing mistakes with other physicians is beneficial.[49] However, medical providers may be less forgiving of one another.[124] The reason is not clear, but one essayist has admonished, "Don't Take Too Much Joy in the Mistakes of Other Doctors."[125]

To the physician's institution

Disclosure of errors, especially 'near misses' may be able to reduce subsequent errors in institutions that are capable of reviewing near misses.[126] However, doctors report that institutions may not be supportive of the doctor.[49]

Use of rationalization to cover up medical errors

Based on anecdotal and survey evidence, Banja[127] states that rationalization (making excuses) is very common among the medical profession to cover up medical errors.

By potential for harm to the patient

In a survey of more than 10,000 physicians in the United States, when asked the question, "Are there times when it's acceptable to cover up or avoid revealing a mistake if that mistake would not cause harm to the patient?", 19% answered yes, 60% answered no and 21% answered it depends. On the question, "Are there times when it is acceptable to cover up or avoid revealing a mistake if that mistake would potentially or likely harm the patient?", 2% answered yes, 95% answered no and 3% answered it depends.[128]

Cause-specific preventive measures

Traditionally, errors are attributed to mistakes made by individuals, who then may be penalized. A common approach to respond to and prevent specific errors is requiring additional checks at particular points in the system, whose findings and detail of execution must be recorded. As an example, an error of free flow IV administration of heparin is approached by teaching staff how to use the IV systems and to use special care in setting the IV pump. While overall errors become less likely, the checks add to workload and may in themselves be a cause of additional errors. In some hospitals, a regular morbidity and mortality conference meeting is scheduled to discuss complications or deaths and learn from or improve the overall processes.

A newer model for improvement in medical care takes its origin from the work of W. Edwards Deming in a model of Total Quality Management. In this model, there is an attempt to identify the underlying system defect that allowed the error to occur. As an example, in such a system the error of free flow IV administration of heparin is dealt with by not using IV heparin and substituting subcutaneous administration of heparin, obviating the entire problem. However, such an approach presupposes available research showing that subcutaneous heparin is as effective as IV. Thus, most systems use a combination of approaches to the problem.

In specific specialties

The field of medicine that has taken the lead in systems approaches to safety is anaesthesiology.[129] Steps such as standardization of IV medications to 1 ml doses, national and international color-coding standards, and development of improved airway support devices has the field a model of systems improvement in care.

Pharmacy professionals have extensively studied the causes of errors in the prescribing, preparation, dispensing and administration of medications. As far back as the 1930s, pharmacists worked with physicians to select, from many options, the safest and most effective drugs available for use in hospitals.[130] The process is known as the Formulary System and the list of drugs is known as the Formulary. In the 1960s, hospitals implemented unit dose packaging and unit dose drug distribution systems to reduce the risk of wrong drug and wrong dose errors in hospitalized patients;[131] centralized sterile admixture services were shown to decrease the risks of contaminated and infected intravenous medications;[132][133] and pharmacists provided drug information and clinical decision support directly to physicians to improve the safe and effective use of medications.[134] Pharmacists are recognized experts in medication safety and have made many contributions that reduce error and improve patient care over the last 50 years. More recently, governments have attempted to address issues like patient-pharmacist communication and consumer knowledge through measures like the Australian Government's Quality Use of Medicines policy.

Legal procedure

Standards and regulations for medical malpractice vary by country and jurisdiction within countries. Medical professionals may obtain professional liability insurances to offset the risk and costs of lawsuits based on medical malpractice.

Prevention

Medical care is frequently compared adversely to aviation; while many of the factors that lead to errors in both fields are similar, aviation's error management protocols are regarded as much more effective.[135] Safety measures include informed consent, the availability of a second practitioner's opinion, voluntary reporting of errors, root cause analysis, reminders to improve patient medication adherence, hospital accreditation, and systems to ensure review by experienced or specialist practitioners.[136]

A template has been developed for the design (both structure and operation) of hospital medication safety programmes, particularly for acute tertiary settings,[137] which emphasizes safety culture, infrastructure, data (error detection and analysis), communication and training.

Particularly to prevent the medication errors in the perspective of the intrathecal administration of local anaesthetics, there is a proposal to change the presentation and packaging of the appliances and agents used for this purpose. One spinal needle with a syringe prefilled with the local anaesthetic agents may be marketed in a single blister pack, which will be peeled open and presented before the anaesthesiologist conducting the procedure.[138]

Physician well-being has also been recommended as an indicator of healthcare quality given its association with patient safety outcomes.[139] A meta-analysis involving 21517 participants found that physicians with depressive symptoms had a 95% higher risk of reporting medical errors and that the association between physician depressive symptoms and medical errors is bidirectional [61]

Reporting requirements

In the United States, adverse medical event reporting systems were mandated in just over half (27) of the states as of 2014, a figure unchanged since 2007.[140][141] In U.S. hospitals error reporting is a condition of payment by Medicare.[142] An investigation by the Office of Inspector General, Department of Health and Human Services released January 6, 2012 found that most errors are not reported and even in the case of errors that are reported and investigated changes are seldom made which would prevent them in the future. The investigation revealed that there was often lack of knowledge regarding which events were reportable and recommended that lists of reportable events be developed.[143]

Misconceptions

These are the common misconceptions about medical error:

  • Medical error is the "third leading cause of death" in the United States. This canard stems from an erroneous 2016 study which, according to David Gorski, "has taken on a life of its own" and fuelled "a myth promulgated by both quacks and academics".[144]
  • "Bad apples" or incompetent health care providers are a common cause. (Although human error is commonly an initiating event, the faulty care delivery process invariably permits or compounds the harm and so is the focus of improvement.)[12]
  • High-risk procedures or medical specialties are responsible for most avoidable adverse events. (Although some mistakes, such as in surgery, are harder to conceal, errors occur in all levels of care.[12] Even though complex procedures entail more risk, adverse outcomes are not usually due to error, but to the severity of the condition being treated.)[42][145] However, United States Pharmacopeia has reported that medication errors during the course of a surgical procedure are three times more likely to cause harm to a patient than those occurring in other types of hospital care.[43]
  • If a patient experiences an adverse event during the process of care, an error has occurred. (Most medical care entails some level of risk, and there can be complications or side effects, even unforeseen ones, from the underlying condition or from the treatment itself.)[10]

See also


References

  1. Zhang J; Pate, VL; Johnson TR (2008). "Medical error: Is the solution medical or cognitive?". Journal of the American Medical Informatics Association 6 (Supp1): 75–77. doi:10.1197/jamia.M1232. PMID 12386188. 
  2. "Hand washing and physicians: how to get them together". Infect Control Hosp Epidemiol 23 (1): 32–5. January 2002. doi:10.1086/501965. PMID 11868890. 
  3. Hofer, TP; Kerr, EA; Hayward, RA (2000). "What is an error?". Effective Clinical Practice 3 (6): 261–9. PMID 11151522. http://www.acponline.org/journals/ecp/novdec00/hofer.htm. Retrieved June 11, 2007. 
  4. Hayward, Rodney A.; Hofer, Timothy P. (July 25, 2001). "Estimating Hospital Deaths Due to Medical Errors: Preventability Is in the Eye of the Reviewer". JAMA 286 (4): 415–20. doi:10.1001/jama.286.4.415. PMID 11466119. 
  5. Kopec, D.; Tamang, S.; Levy, K.; Eckhardt, R.; Shagas, G. (2006). "The state of the art in the reduction of medical errors". Studies in Health Technology and Informatics 121: 126–37. PMID 17095810. 
  6. Graber ML, Franklin N, Gordon R. Diagnostic error in internal medicine. Arch Intern Med. 2005;165(13):1493-1499.
  7. Schiff GD, Hasan O, Kim S, et al. Diagnostic Error in Medicine - Analysis of 583 Physician-Reported Errors. Arch Int Med. 2009;169(20):1881-1887.
  8. Singh H. Helping health care organizations to define diagnostic errors as missed opportunities in diagnosis. Joint Commission Journal on Quality and Patient Safety. 2014;40(3):99-101.
  9. Institute of Medicine. Improving Diagnosis in Health Care. National Academies Press, Washington, DC. 2015.
  10. 10.0 10.1 10.2 Institute of Medicine (2000). To Err Is Human: Building a Safer Health System. Washington, DC: The National Academies Press. p. 4. doi:10.17226/9728. ISBN 978-0-309-26174-6. http://www.nap.edu/catalog/9728. 
  11. Charatan, Fred (4 March 2000). "Clinton acts to reduce medical mistakes". BMJ 320 (7235): 597. doi:10.1136/bmj.320.7235.597. PMID 10698861. 
  12. 12.0 12.1 12.2 "Epidemiology of medical error". BMJ 320 (7237): 774–7. March 2000. doi:10.1136/bmj.320.7237.774. PMID 10720365. 
  13. 13.0 13.1 13.2 Ker, Katharine; Edwards, Philip James; Felix, Lambert M; Blackhall, Karen; Roberts, Ian (12 May 2010). "Caffeine for the prevention of injuries and errors in shift workers". Cochrane Database of Systematic Reviews (5): CD008508. doi:10.1002/14651858.CD008508. PMID 20464765. 
  14. Hayward, Rodney A.; Heisler, Michele; Adams, John; Dudley, R. Adams; Hofer, Timothy P. (August 2007). "Overestimating Outcome Rates: Statistical Estimation When Reliability Is Suboptimal". Health Services Research 42 (4): 1718–1738. doi:10.1111/j.1475-6773.2006.00661.x. PMID 17610445. 
  15. 15.0 15.1 "Estimating hospital deaths due to medical errors: preventability is in the eye of the reviewer". JAMA 286 (4): 415–20. 2001. doi:10.1001/jama.286.4.415. PMID 11466119. 
  16. "Medication Errors Injure 1.5 Million People and Cost Billions of Dollars Annually". The National Academy of Science. 2006. http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=11623. 
  17. Leape LL (1994). "Error in medicine". JAMA 272 (23): 1851–7. doi:10.1001/jama.272.23.1851. PMID 7503827. 
  18. 2002 Annual Report , The Commonwealth Fund
  19. "Cancer" (in en-GB). https://www.who.int/mediacentre/factsheets/fs297/en/. 
  20. 20.0 20.1 "Incidence of adverse events and negligence in hospitalized patients. Results of the Harvard Medical Practice Study I". N Engl J Med 324 (6): 370–6. 1991. doi:10.1056/NEJM199102073240604. PMID 1987460. 
  21. 21.0 21.1 "The Impact of Evidence on Physicians' Inpatient Treatment Decisions". J Gen Intern Med 19 (5 Pt 1): 402–9. 2004. doi:10.1111/j.1525-1497.2004.30306.x. PMID 15109337. 
  22. "The quality of health care delivered to adults in the United States". N Engl J Med 348 (26): 2635–45. 2003. doi:10.1056/NEJMsa022615. PMID 12826639. 
  23. "Medical Care — Is More Always Better?". New England Journal of Medicine 349 (17): 1665–7. October 2003. doi:10.1056/NEJMe038149. PMID 14573739. 
  24. Makary, Martin A; Daniel, Michael (3 May 2016). "Medical error—the third leading cause of death in the US". BMJ 353: i2139. doi:10.1136/bmj.i2139. PMID 27143499. 
  25. Moriyama, IM; Loy, RM; Robb-Smith, AHT (2011). Rosenberg, HM; Hoyert, DL. eds. History of the Statistical Classification of Diseases and Causes of Death. Hyattsville, MD: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics. ISBN 978-0-8406-0644-0. https://www.cdc.gov/nchs/data/misc/classification_diseases2011.pdf. 
  26. 26.0 26.1 Clapper, Timothy C.; Ching, Kevin (2020). "Debunking the myth that the majority of medical errors are attributed to communication" (in en). Medical Education 54 (1): 74–81. doi:10.1111/medu.13821. ISSN 1365-2923. PMID 31509277. 
  27. 27.0 27.1 Hannawa, Annegret; Wendt, Anne; Day, Lisa J. (2017-12-04). New Horizons in Patient Safety: Safe Communication: Evidence-based core Competencies with Case Studies from Nursing Practice. De Gruyter. doi:10.1515/9783110454857. ISBN 978-3-11-045485-7. https://www.degruyter.com/document/doi/10.1515/9783110454857/html. 
  28. 28.0 28.1 Hannawa, Annegret; Wu, Albert; Juhasz, Robert (2017-03-06). New Horizons in Patient Safety: Understanding Communication: Case Studies for Physicians. De Gruyter. doi:10.1515/9783110455014. ISBN 978-3-11-045501-4. https://www.degruyter.com/document/doi/10.1515/9783110455014/html. 
  29. Harrison, Bernadette; Gibberd, Robert W.; Wilson, Ross McL; Weingart, N. Saul (18 March 2000). "Epidemiology of medical error". BMJ 320 (7237): 774–777. doi:10.1136/bmj.320.7237.774. PMID 10720365. 
  30. Friedman, Richard A.; D, M (2003). "CASES; Do Spelling and Penmanship Count? In Medicine, You Bet". The New York Times. https://www.nytimes.com/2003/03/11/health/cases-do-spelling-and-penmanship-count-in-medicine-you-bet.html. 
  31. Hannawa, Annegret F (June 2018). ""SACCIA Safe Communication": Five core competencies for safe and high-quality care" (in en). Journal of Patient Safety and Risk Management 23 (3): 99–107. doi:10.1177/2516043518774445. ISSN 2516-0435. http://journals.sagepub.com/doi/10.1177/2516043518774445. 
  32. Lyundup, Alexey V.; Balyasin, Maxim V.; Maksimova, Nadezhda V.; Kovina, Marina V.; Krasheninnikov, Mikhail E.; Dyuzheva, Tatiana G.; Yakovenko, Sergey A.; Appolonova, Svetlana A. et al. (2021-10-29). "Misdiagnosis of diabetic foot ulcer in patients with undiagnosed skin malignancies". International Wound Journal 19 (4): 871–887. doi:10.1111/iwj.13688. ISSN 1742-481X. PMID 34713964. 
  33. Aoki, Takuya; Watanuki, Satoshi (2020-08-20). "Multimorbidity and patient-reported diagnostic errors in the primary care setting: multicentre cross-sectional study in Japan". BMJ Open 10 (8): e039040. doi:10.1136/bmjopen-2020-039040. ISSN 2044-6055. PMID 32819954. 
  34. Maskell, Giles (2019). "Error in radiology—where are we now?". The British Journal of Radiology 92 (1096): 20180845. doi:10.1259/bjr.20180845. PMID 30457880. 
  35. McGurk, S; Brauer, K; Macfarlane, TV; Duncan, KA (2008). "The effect of voice recognition software on comparative error rates in radiology reports". Br J Radiol 81 (970): 767–70. doi:10.1259/bjr/20698753. PMID 18628322. 
  36. Wadhwa, R. R.; Park, D. Y.; Natowicz, M. R. (2018). "The accuracy of computer‐based diagnostic tools for the identification of concurrent genetic disorders". American Journal of Medical Genetics Part A 176 (12): 2704–2709. doi:10.1002/ajmg.a.40651. PMID 30475443. 
  37. "Epidemiology of medical error". Western Journal of Medicine 172 (6): 390–3. June 2000. doi:10.1136/ewjm.172.6.390. PMID 10854389. 
  38. List of medical symptoms. https://en.wikipedia.org/wiki/List_of_medical_symptoms#Medical_signs_and_symptoms
  39. Utter,GH; Atolagbe, OO; Cooke, DT. The Use of the International Classification of Diseases, Tenth Revision, Clinical Modification and Procedure Classification System in Clinical and Health Services Research; The Devil Is in the Details. JAMA Surgery. 2019;154(12):1089-1090
  40. Emmett, KR. Nonspecific and atypical presentation of disease in the older patient. Geriatrics. 1998; 53(2):50–52
  41. Ronicke, S; Hirsch, MC; Türk, E; Larionov, K; Tientcheu1, D; Wagne, AD. Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study. Orphanet Journal of Rare Diseases. 2019. 14:69
  42. 42.0 42.1 42.2 Neale, Graham; Woloshynowych, Maria; Vincent, Charles (July 2001). "Exploring the causes of adverse events in NHS hospital practice". Journal of the Royal Society of Medicine 94 (7): 322–30. doi:10.1177/014107680109400702. PMID 11418700. 
  43. 43.0 43.1 Gardner, Amanda (6 March 2007). "Medication Errors During Surgeries Particularly Dangerous". The Washington Post. https://www.washingtonpost.com/wp-dyn/content/article/2007/03/06/AR2007030601334.html. 
  44. McDonald, MD, Clement J. (4 April 2006). "Computerization Can Create Safety Hazards: A Bar-Coding Near Miss". Annals of Internal Medicine 144 (7): 510–516. doi:10.7326/0003-4819-144-7-200604040-00010. PMID 16585665. 
  45. US Agency for Healthcare Research & Quality (2008-01-09). "Physicians Want To Learn from Medical Mistakes but Say Current Error-reporting Systems Are Inadequate". http://www.ahrq.gov/news/press/pr2008/errepsyspr.htm. 
  46. Clement JP; Lindrooth RC; Chukmaitov AS; Chen HF (February 2007). "Does the patient's payer matter in hospital patient safety?: a study of urban hospitals". Med Care 45 (2): 131–8. doi:10.1097/01.mlr.0000244636.54588.2b. PMID 17224775. 
  47. "Incorporating Patient-Safe Design into the Guidelines". The American Institute of Architects Academy Journal. 2005-10-19. http://www.aia.org/journal_aah.cfm?pagename=aah_jrnl_20051019_guidelines&dspl=1&article=article. 
  48. The Joint Commission's Annual Report on Quality and Safety 2007: Improving America's Hospitals (Accessed 2008-04-09)
  49. 49.0 49.1 49.2 49.3 49.4 "Do house officers learn from their mistakes?". JAMA 265 (16): 2089–94. 1991. doi:10.1001/jama.265.16.2089. PMID 2013929. 
  50. Michael L. Millenson (2003). "The Silence". Health Affairs 22 (2): 103–112. doi:10.1377/hlthaff.22.2.103. PMID 12674412. 
  51. Henneman, Elizabeth A. (1 October 2007). "Unreported Errors in the Intensive Care Unit, A Case Study of the Way We Work". Critical Care Nurse 27 (5): 27–34. doi:10.4037/ccn2007.27.5.27. PMID 17901458. http://ccn.aacnjournals.org/cgi/content/full/27/5/27. Retrieved 2008-03-23. 
  52. Phillips DP; Barker GE (May 2010). "A July Spike in Fatal Medication Errors: A Possible Effect of New Medical Residents". J Gen Intern Med 25 (8): 774–779. doi:10.1007/s11606-010-1356-3. PMID 20512532. 
  53. Krupa, Carolyne (21 June 2010). "New residents linked to July medication errors". American Medical News 6 (21). https://insights.ovid.com/american-medical-news/ammn/2010/06/210/new-residents-linked-july-medication-errors/14/00000476. 
  54. Jerome E. Groopman (5 November 2009). "Diagnosis: What Doctors are Missing". New York Review of Books. http://www.nybooks.com/articles/archives/2009/nov/05/diagnosis-what-doctors-are-missing/. 
  55. Croskerry, P. (2009). "A Universal Model of Clinical Reasoning". Acad Med 84 (8): 1022–8. doi:10.1097/ACM.0b013e3181ace703. PMID 19638766. 
  56. Barger, L. K. et al. (2006). "Impact of Extended-Duration Shifts on Medical Errors, Adverse Events, and Attentional Failures". PLOS Med 3 (12): e487. doi:10.1371/journal.pmed.0030487. PMID 17194188. 
  57. 57.0 57.1 When Doctors Don't Sleep, Talk of the Nation, National Public Radio, 13 December 2006.
  58. Nocera, Antony; Khursandi, Diana Strange (June 1998). "Doctors' working hours: can the medical profession afford to let the courts decide what is reasonable?". Medical Journal of Australia 168 (12): 616–618. doi:10.5694/j.1326-5377.1998.tb141450.x. PMID 9673625. 
  59. Landrigan, Christopher P.; Rothschild, Jeffrey M.; Cronin, John W.; Kaushal, Rainu; Burdick, Elisabeth; Katz, Joel T.; Lilly, Craig M.; Stone, Peter H. et al. (28 October 2004). "Effect of Reducing Interns' Work Hours on Serious Medical Errors in Intensive Care Units". New England Journal of Medicine 351 (18): 1838–1848. doi:10.1056/NEJMoa041406. PMID 15509817. 
  60. Barger, Laura K; Ayas, Najib T; Cade, Brian E; Cronin, John W; Rosner, Bernard; Speizer, Frank E; Czeisler, Charles A; Mignot, Emmanuel (12 December 2006). "Impact of Extended-Duration Shifts on Medical Errors, Adverse Events, and Attentional Failures". PLOS Medicine 3 (12): e487. doi:10.1371/journal.pmed.0030487. PMID 17194188. 
  61. 61.0 61.1 Pereira-Lima, K; Mata, DA; Loureiro, SR; Crippa, JA; Bolsoni, LM; Sen, S (2019). "Association Between Physician Depressive Symptoms and Medical Errors: A Systematic Review and Meta-analysis". JAMA Network Open 2 (11): e1916097. doi:10.1001/jamanetworkopen.2019.16097. PMID 31774520. 
  62. Fahrenkopf, Amy M; Sectish, Theodore C; Barger, Laura K; Sharek, Paul J; Lewin, Daniel; Chiang, Vincent W; Edwards, Sarah; Wiedermann, Bernhard L et al. (1 March 2008). "Rates of medication errors among depressed and burnt out residents: prospective cohort study". BMJ 336 (7642): 488–491. doi:10.1136/bmj.39469.763218.BE. PMID 18258931. 
  63. Aiken, Linda H.; Clarke, SP; Sloane, DM; Sochalski, J; Silber, JH (23 October 2002). "Hospital Nurse Staffing and Patient Mortality, Nurse Burnout, and Job Dissatisfaction". JAMA 288 (16): 1987–93. doi:10.1001/jama.288.16.1987. PMID 12387650. 
  64. 8th Annual MEDMARX Report (2008-01-29). "Press Release". U.S. Pharmacopeia. http://www.usp.org/aboutUSP/media/newsCenter.html?article=105435. 
  65. 65.0 65.1 Waite, Stephen; Grigorian, Arkadij; Alexander, Robert G.; Macknik, Stephen L.; Carrasco, Marisa; Heeger, David J.; Martinez-Conde, Susana (25 June 2019). "Analysis of Perceptual Expertise in Radiology – Current Knowledge and a New Perspective". Frontiers in Human Neuroscience 13: 213. doi:10.3389/fnhum.2019.00213. PMID 31293407. 
  66. Alexander, Robert; Yazdanie, Fahd; Waite, Stephen Anthony; Chaudhry, Zeshan; Kolla, Srinivas; Macknik, Stephen; Martinez-Conde, Susana (2021). "Visual Illusions in Radiology: untrue perceptions in medical images and their implications for diagnostic accuracy". Frontiers in Neuroscience 15: 629469. doi:10.3389/fnins.2021.629469. PMID 34177444. 
  67. Anderson, J.G. (2005). Information technology for detecting medication errors and adverse drug events. (Expert Opin Drug Saf 3). pp. 449–455. 
  68. Abrahamson, Kathleen; Anderson, J.G. (2017). "Your Health Care May Kill You: Medical Errors". Studies in Health Technology and Informatics 234 (Building Capacity for Health Informatics in the Future): 13–17. doi:10.3233/978-1-61499-742-9-13. PMID 28186008. https://ebooks.iospress.nl/publication/46132. 
  69. Makary, Martin; Daniel, Michael (2016). "Medical error—the third leading cause of death in the US". BMJ 353: i2139. doi:10.1136/bmj.i2139. PMID 27143499. 
  70. Shreve, J et al (Milliman Inc.) (June 2010). "The Economic Measurement of Medical Errors". https://www.soa.org/globalassets/assets/files/research/projects/research-econ-measurement.pdf. 
  71. Arlen, Jennifer (October 1, 2013). "Economic Analysis of Medical Malpractice Liability and Its Reform". New York University Law and Economics Working Papers. 
  72. Berlin, Leonard (2007). "Accuracy of Diagnostic Procedures: Has It Improved Over the Past Five Decades?". American Journal of Roentgenology 188 (5): 1173–1178. doi:10.2214/AJR.06.1270. PMID 17449754. 
  73. Brady, Adrian (December 7, 2016). "Error and discrepancy in radiology: inevitable or avoidable?". Insights into Imaging 8 (1): 171–182. doi:10.1007/s13244-016-0534-1. PMID 27928712. 
  74. Brady, Adrian (January 2012). "Discrepancy and Error in Radiology: Concepts, Causes and Consequences". Ulster Med J. 81 (1): 3–9. PMID 23536732. 
  75. Siemieniuk, Reed; Fonseca, Kevin; Gill, M. John (November 2012). "Using Root Cause Analysis and Form Redesign to Reduce Incorrect Ordering of HIV Tests". Joint Commission Journal on Quality and Patient Safety 38 (11): 506–512. doi:10.1016/S1553-7250(12)38067-7. PMID 23173397. 
  76. Berner, Eta S.; Graber, Mark L. (May 2008). "Overconfidence as a Cause of Diagnostic Error in Medicine". The American Journal of Medicine 121 (5): S2–S23. doi:10.1016/j.amjmed.2008.01.001. PMID 18440350. 
  77. Weng, Qing Yu; Raff, Adam B.; Cohen, Jeffrey M.; Gunasekera, Nicole; Okhovat, Jean-Phillip; Vedak, Priyanka; Joyce, Cara; Kroshinsky, Daniela et al. (1 February 2017). "Costs and Consequences Associated With Misdiagnosed Lower Extremity Cellulitis". JAMA Dermatology 153 (2): 141–146. doi:10.1001/jamadermatol.2016.3816. PMID 27806170. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33785925. 
  78. Bowden, Charles L. (January 2001). "Strategies to Reduce Misdiagnosis of Bipolar Depression". Psychiatric Services 52 (1): 51–55. doi:10.1176/appi.ps.52.1.51. PMID 11141528. 
  79. "Schizophrenia Symptoms". schizophrenia.com. http://www.schizophrenia.com/diag.php#misdiagnosis. 
  80. "Case study: psychiatric misdiagnosis of non-24-hours sleep–wake schedule disorder resolved by melatonin". J Am Acad Child Adolesc Psychiatry 44 (12): 1271–1275. 2005. doi:10.1097/01.chi.0000181040.83465.48. PMID 16292119. 
  81. van Vliet, J A; Eekers, PJ; Haan, J; Ferrari, MD; Dutch RUSSH Study, Group. (1 August 2003). "Features involved in the diagnostic delay of cluster headache". Journal of Neurology, Neurosurgery & Psychiatry 74 (8): 1123–1125. doi:10.1136/jnnp.74.8.1123. PMID 12876249. 
  82. "IHS Classification ICHD-II 3.1 Cluster headache". The International Headache Society. http://www.ihs-classification.org/en/02_klassifikation/02_teil1/03.01.00_cluster.html. 
  83. Tfelt-Hansen, Peer C.; Jensen, Rigmor H. (July 2012). "Management of Cluster Headache". CNS Drugs 26 (7): 571–580. doi:10.2165/11632850-000000000-00000. PMID 22650381. 
  84. Brett, Denise; Warnell, Frances; McConachie, Helen; Parr, Jeremy R. (2016). "Factors Affecting Age at ASD Diagnosis in UK: No Evidence that Diagnosis Age has Decreased Between 2004 and 2014". Journal of Autism and Developmental Disorders 46 (6): 1974–1984. doi:10.1007/s10803-016-2716-6. PMID 27032954. 
  85. Lehnhardt, F.-G.; Gawronski, A.; Volpert, K.; Schilbach, L.; Tepest, R.; Vogeley, K. (15 November 2011). "Das psychosoziale Funktionsniveau spätdiagnostizierter Patienten mit Autismus-Spektrum-Störungen – eine retrospektive Untersuchung im Erwachsenenalter" (in de). Fortschritte der Neurologie · Psychiatrie 80 (2): 88–97. doi:10.1055/s-0031-1281642. PMID 22086712. 
  86. Aggarwal, Shilpa; Angus, Beth (4 February 2015). "Misdiagnosis versus missed diagnosis: diagnosing autism spectrum disorder in adolescents". Australasian Psychiatry 23 (2): 120–123. doi:10.1177/1039856214568214. PMID 25653302. 
  87. Corvin, Aiden; Fitzgerald, Michael (2001). "Diagnosis and differential diagnosis of Asperger syndrome". Advances in Psychiatric Treatment 7 (4): 310–318. doi:10.1192/apt.7.4.310. 
  88. Leskovec, Thomas J.; Rowles, Brieana M.; Findling, Robert L. (March 2008). "Pharmacological Treatment Options for Autism Spectrum Disorders in Children and Adolescents". Harvard Review of Psychiatry 16 (2): 97–112. doi:10.1080/10673220802075852. PMID 18415882. 
  89. "Reliability and Prevalence in the DSM-5 Field Trials". January 12, 2012. http://www.dsm5.org/Documents/Reliability_and_Prevalence_in_DSM-5_Field_Trials_1-12-12.pdf. 
  90. Linda T. Kohn; Janet M. Corrigan; Molla S. Donaldson (2000). To Err is Human: Building a Safer Health System. doi:10.17226/9728. ISBN 978-0-309-26174-6. 
  91. 91.0 91.1 Raden Anita Indriyanti; Fajar Awalia Yulianto; Yuke Andriane (2019). "Prescription Writing Errors in Clinical Clerkship among Medical Students" (PDF). Global Medical and Health Communication 7: 41–42. doi:10.29313/gmhc.v7i1.4069. ISSN 2301-9123. OCLC 8186593909. https://ejournal.unisba.ac.id/index.php/gmhc/article/view/4069. 
  92. "APPEAL NO. 991681 Texas v. Dr. K". https://www.tdi.texas.gov/appeals/1999cases/991681r.pdf. 
  93. Elliott, Rachel (22 February 2018). "PREVALENCE AND ECONOMIC BURDEN OF MEDICATION ERRORS IN THE NHS IN ENGLAND". Policy Research Unit in Economic Evaluation of Health & Care Interventions. University of Sheffield. https://www.bpsassessment.com/wp-content/uploads/2020/06/1.-Prevalence-and-economic-burden-of-medication-errors-in-the-NHS-in-England-1.pdf. 
  94. "Validate User". https://academic.oup.com/ijpp/article/28/6/663/6133310?login=false. 
  95. Coutsouvelis, John; Siderov, Jim; Tey, Amanda Y.; Bortz, Hadley D.; o'Connor, Shaun R.; Rowan, Gail D.; Vasileff, Hayley M.; Page, Amy T. et al. (2020). "The impact of pharmacist‐led strategies implemented to reduce errors related to cancer therapies: A systematic review". Journal of Pharmacy Practice and Research 50 (6): 466–480. doi:10.1002/jppr.1699. https://onlinelibrary.wiley.com/doi/10.1002/jppr.1699. 
  96. Donyai, Parastou (February 2008). "The effects of electronic prescribing on the quality of prescribing". British Journal of Clinical Pharmacology (Br J Clin Pharmacol) 65 (2): 230–237. doi:10.1111/j.1365-2125.2007.02995.x. PMID 17662088. 
  97. "Facing our mistakes". N. Engl. J. Med. 310 (2): 118–22. 1984. doi:10.1056/NEJM198401123100211. PMID 6690918. 
  98. "The heart of darkness: the impact of perceived mistakes on physicians". Journal of General Internal Medicine 7 (4): 424–31. 1992. doi:10.1007/bf02599161. PMID 1506949. 
  99. Wu AW (2000). "Medical error: the second victim : The doctor who makes the mistake needs help too". BMJ 320 (7237): 726–7. doi:10.1136/bmj.320.7237.726. PMID 10720336. 
  100. "The Emotional Impact of Medical Errors on Practicing Physicians in the United States and Canada". Joint Commission Journal on Quality and Patient Safety 33 (2): 467–476. 2007. doi:10.1016/S1553-7250(07)33050-X. PMID 17724943. 
  101. 101.0 101.1 "What is a prescribing error?". Qual Saf Health Care 9 (4): 232‐237. Oct 2000. doi:10.1136/qhc.9.4.232. PMID 11101708. 
  102. 102.0 102.1 102.2 Romero‐Perez, Raquel; Hildick‐Smith, Philippa (September 2012). "Minimising Prescribing Errors in Paediatrics ‐ Clinical Audit". Scottish Universities Medical Journal 1: 14–1. http://sumj.dundee.ac.uk/data/uploads/epub-article/014-sumj.epub.pdf. 
  103. Gandhi, Tejal K.; Kachalia, Allen; Thomas, Eric J.; Puopolo, Ann Louise; Yoon, Catherine; Brennan, Troyen A.; Studdert, David M. (3 October 2006). "Missed and Delayed Diagnoses in the Ambulatory Setting: A Study of Closed Malpractice Claims". Annals of Internal Medicine 145 (7): 488–96. doi:10.7326/0003-4819-145-7-200610030-00006. PMID 17015866. 
  104. Redelmeier, Donald A.; Tan, Siew H.; Booth, Gillian L. (21 May 1998). "The Treatment of Unrelated Disorders in Patients with Chronic Medical Diseases". New England Journal of Medicine 338 (21): 1516–1520. doi:10.1056/NEJM199805213382106. PMID 9593791. 
  105. Lurie, Nicole; Rank, Brian; Parenti, Connie; Woolley, Tony; Snoke, William (22 June 1989). "How Do House Officers Spend Their Nights?". New England Journal of Medicine 320 (25): 1673–1677. doi:10.1056/NEJM198906223202507. PMID 2725617. 
  106. "Practice habits in a group of eight internists". Ann. Intern. Med. 84 (5): 594–601. 1976. doi:10.7326/0003-4819-84-5-594. PMID 1275366. 
  107. Thomas Laurence (2004). "What Do You Want?". Extreme Clinic -- An Outpatient Doctor's Guide to the Perfect 7 Minute Visit. Philadelphia: Hanley & Belfus. p. 120. ISBN 978-1-56053-603-1. 
  108. 108.0 108.1 Seder D (2006). "Of poems and patients". Ann. Intern. Med. 144 (2): 142. doi:10.7326/0003-4819-144-2-200601170-00014. PMID 16418416. 
  109. Berlinger, N; Wu, AW (1 February 2005). "Subtracting insult from injury: addressing cultural expectations in the disclosure of medical error". Journal of Medical Ethics 31 (2): 106–108. doi:10.1136/jme.2003.005538. PMID 15681676. 
  110. 110.0 110.1 "Medical Error Disclosure Competence (MEDC) -- Prof. Dr. Annegret Hannawa" (in en-US). https://annegrethannawa.com/medc. 
  111. West, Colin P.; Huschka, Mashele M.; Novotny, Paul J.; Sloan, Jeff A.; Kolars, Joseph C.; Habermann, Thomas M.; Shanafelt, Tait D. (6 September 2006). "Association of Perceived Medical Errors With Resident Distress and Empathy". JAMA 296 (9): 1071–8. doi:10.1001/jama.296.9.1071. PMID 16954486. 
  112. "How house officers cope with their mistakes". West. J. Med. 159 (5): 565–9. 1993. PMID 8279153. 
  113. "Patients' and physicians' attitudes regarding the disclosure of medical errors". JAMA 289 (8): 1001–7. 2003. doi:10.1001/jama.289.8.1001. PMID 12597752. 
  114. Rosemary Gibson; Janardan Prasad Singh (2003). Wall of Silence. ISBN 978-0-89526-112-0. https://archive.org/details/wallofsilenceunt00gibs. 
  115. Wu, Albert W.; Cavanaugh, Thomas A.; McPhee, Stephen J.; Lo, Bernard; Micco, Guy P. (December 1997). "To tell the truth". Journal of General Internal Medicine 12 (12): 770–775. doi:10.1046/j.1525-1497.1997.07163.x. PMID 9436897. 
  116. Kelly, Karen (2005). "Study explores how physicians communicate mistakes". University of Toronto. http://www.news.utoronto.ca/bin6/051117-1824.asp. 
  117. Agency for Healthcare Research and Quality (AHRQ) http://psnet.ahrq.gov/primer.aspx?primerID=2
  118. "Ethics manual: fifth edition". Ann Intern Med 142 (7): 560–82. 2005. doi:10.7326/0003-4819-142-7-200504050-00014. PMID 15809467. 
  119. "Disclosing Medical Errors to Patients: Attitudes and Practices of Physicians and Trainees". Journal of General Internal Medicine 22 (7): 988–96. 2007. doi:10.1007/s11606-007-0227-z. PMID 17473944. 
  120. "Error reporting and disclosure systems: views from hospital leaders". JAMA 293 (11): 1359–66. 2005. doi:10.1001/jama.293.11.1359. PMID 15769969. 
  121. "Handling hospital errors: is disclosure the best defense?". Ann. Intern. Med. 131 (12): 970–2. 1999. doi:10.7326/0003-4819-131-12-199912210-00012. PMID 10610651. 
  122. Zimmerman R (May 18, 2004). "Doctors' New Tool To Fight Lawsuits: Saying 'I'm Sorry'". The Wall Street Journal: p. A1. https://www.wsj.com/articles/SB108482777884713711. 
  123. Newman MC (1996). "The emotional impact of mistakes on family physicians". Archives of Family Medicine 5 (2): 71–5. doi:10.1001/archfami.5.2.71. PMID 8601210. 
  124. 124.0 124.1 Sobecks, Nancy W.; Justice, AC; Hinze, S; Chirayath, HT; Lasek, RJ; Chren, MM; Aucott, J; Juknialis, B et al. (16 February 1999). "When Doctors Marry Doctors: A Survey Exploring the Professional and Family Lives of Young Physicians". Annals of Internal Medicine 130 (4_Part_1): 312–9. doi:10.7326/0003-4819-130-4-199902160-00017. PMID 10068390. 
  125. Oscar London (1987). "Rule 35: Don't Take Too Much Joy in the Mistakes of Other Doctors". Kill as few patients as possible: and fifty-six other essays on how to be the world's best doctor. Berkeley, Calif: Ten Speed Press. ISBN 978-0-89815-197-8. https://archive.org/details/killasfewpatient00lond. 
  126. Barach, P.; Small, SD (18 March 2000). "Reporting and preventing medical mishaps: lessons from non-medical near miss reporting systems". BMJ 320 (7237): 759–763. doi:10.1136/bmj.320.7237.759. PMID 10720361. 
  127. Banja, John D. (2005). Medical errors and medical narcissism. Sudbury, Massachusetts: Jones and Bartlett. ISBN 978-0-7637-8361-7. https://archive.org/details/medicalerrorsmed0000banj. 
  128. Weiss, Gail Garfinkel (January 4, 2011). "'Some Worms Are Best Left in the Can' -- Should You Hide Medical Errors?". https://www.medscape.com/viewarticle/735033. 
  129. Gaba, David M. (18 March 2000). "Anaesthesiology as a model for patient safety in health care". BMJ 320 (7237): 785–788. doi:10.1136/bmj.320.7237.785. PMID 10720368. 
  130. Pease E (1936). "Minimum standards for a hospital pharmacy". Bull Am Coll Surg 21: 34–35. 
  131. Garrison TJ (1979). IV.1 Medication Distribution Systems. Williams and Wilkins. ISBN 978-0-683-07884-8. https://archive.org/details/handbookofinstit00smit. 
  132. Woodward WA; Schwartau N (1979). Chapter IV.3 Developing Intravenous Admixture Systems. Williams and Wilkins. ISBN 978-0-683-07884-8. https://archive.org/details/handbookofinstit00smit. 
  133. Powell MF (1986). Chapter 53 The Patient Profile System (2 ed.). Williams and Wilkins. ISBN 978-0-683-01090-9. 
  134. Evens RP (1986). Chapter 31 Communicating Drug Information (2 ed.). Williams and Wilkins. ISBN 978-0-683-01090-9. 
  135. Helmreich, R. L (18 March 2000). "On error management: lessons from aviation". BMJ 320 (7237): 781–785. doi:10.1136/bmj.320.7237.781. PMID 10720367. 
  136. Espinosa, J. A; Nolan, TW (18 March 2000). "Reducing errors made by emergency physicians in interpreting radiographs: longitudinal study". BMJ 320 (7237): 737–740. doi:10.1136/bmj.320.7237.737. PMID 10720354. 
  137. Relihan, Eileen C; Silke, Bernard; Ryder, Sheila A (23 June 2012). "Design template for a medication safety programme in an acute teaching hospital". European Journal of Hospital Pharmacy 19 (3): 340–344. doi:10.1136/ejhpharm-2012-000050. 
  138. Alam, Rabiul (2016). "Spinal needle with prefilled syringe to prevent medication error: A proposal". Indian Journal of Anaesthesia 60 (7): 525–7. doi:10.4103/0019-5049.186014. PMID 27512177. 
  139. West, Colin P (2016). "Physician Well-Being: Expanding the Triple Aim". Journal of General Internal Medicine 31 (5): 458–459. doi:10.1007/s11606-016-3641-2. PMID 26921157. 
  140. Hanlon, Carrie; Sheedy, Kaitlin; Kniffin, Taylor; Rosenthal, Jill (2015). "2014 Guide to State Adverse Event Reporting Systems". National Academy for State Health Policy. http://www.nashp.org/sites/default/files/2014_Guide_to_State_Adverse_Event_Reporting_Systems.pdf. 
  141. "A national survey of medical error reporting laws.". Yale Journal of Health Policy, Law, and Ethics 9 (1): 201–86. 2009. PMID 19388488. http://www.yale.edu/yjhple/issues/vix-i1-win09/docs/feature.pdf. Retrieved 22 April 2016. 
  142. "Report Finds Most Errors at Hospitals Go Unreported" article by Robert Pear in The New York Times January 6, 2012
  143. Summary "Hospital Incident Reporting Systems Do Not Capture Most Patient Harm" Report (OEI-06-09-00091) Office of Inspector General, Department of Health and Human Services, January 6, 2012
  144. "Are medical errors really the third most common cause of death in the U.S.? (2019 edition)". Science-Based Medicine. 4 February 2019. https://sciencebasedmedicine.org/are-medical-errors-really-the-third-most-common-cause-of-death-in-the-u-s-2019-edition/. 
  145. René Amalberti; Yves Auroy; Don Berwick; Paul Barach (3 May 2005). "Five System Barriers to Achieving Ultrasafe Health Care". Annals of Internal Medicine 142 (9): 756–764. doi:10.7326/0003-4819-142-9-200505030-00012. PMID 15867408. 

Further reading