Physics:Isotopes of potassium

From HandWiki
Short description: Nuclides with atomic number of 19 but with different mass numbers
Main isotopes of Chemistry:potassium (19K)
Iso­tope Decay
abun­dance half-life (t1/2) mode pro­duct
39K 93.258% stable
40K 0.012% 1.248(3)×109 y β 40Ca
ε 40Ar
β+ 40Ar
41K 6.730% stable
Standard atomic weight Ar, standard(K)
view · talk · edit

Potassium (19K) has 26 known isotopes from 31K to 57K, with the exception of still-unknown 32K, as well as an unconfirmed report of 59K.[2] Three of those isotopes occur naturally: the two stable forms 39K (93.3%) and 41K (6.7%), and a very long-lived radioisotope 40K (0.012%)

Naturally occurring radioactive 40K decays with a half-life of 1.248×109 years. 89% of those decays are to stable 40Ca by beta decay, whilst 11% are to 40Ar by either electron capture or positron emission. This latter decay branch has produced an isotopic abundance of argon on Earth which differs greatly from that seen in gas giants and stellar spectra. 40K has the longest known half-life for any positron-emitter nuclide. The long half-life of this primordial radioisotope is caused by a highly spin-forbidden transition: 40K has a nuclear spin of 4, while both of its decay daughters are even–even isotopes with spins of 0.

40K occurs in natural potassium in sufficient quantity that large bags of potassium chloride commercial salt substitutes can be used as a radioactive source for classroom demonstrations. 40K is the largest source of natural radioactivity in healthy animals and humans, greater even than 14C. In a human body of 70 kg mass, about 4,400 nuclei of 40K decay per second.[3]


All other potassium isotopes have half-lives under a day, most under a minute. The least stable is 31K, a three-proton emitter discovered in 2019; its half-life was measured to be shorter than 10 picoseconds.[4][5]

Stable potassium isotopes have been used for several nutrient cycling studies since potassium is a macronutrient required for life.[6]

List of isotopes

Nuclide[7]
[n 1]
Z N Isotopic mass (u)[8]
[n 2][n 3]
Half-life
[n 4]
Decay
mode

Daughter
isotope

[n 5]
Spin and
parity
[n 6][n 4]
Physics:Natural abundance (mole fraction)
Excitation energy[n 4] Normal proportion Range of variation
31K[4][5] 19 12 <10 ps 3p 28S
33K 19 14 33.00756(21)# <25 ns p 32Ar 3/2+#
34K 19 15 33.99869(21)# <40 ns p 33Ar 1+#
35K 19 16 34.9880054(6) 178(8) ms β+ (99.63%) 35Ar 3/2+
β+, p (.37%) 34Cl
36K 19 17 35.9813020(4) 341(3) ms β+ (99.95%) 36Ar 2+
β+, p (.048%) 35Cl
β+, α (.0034%) 32S
37K 19 18 36.97337589(10) 1.2365(9) s β+ 37Ar 3/2+
38K 19 19 37.96908112(21) 7.636(18) min β+ 38Ar 3+
38m1K 130.50(28) keV 924.46(14) ms β+ 38Ar 0+
38m2K 3458.0(2) keV 21.95(11) μs IT 38K (7+)
39K 19 20 38.963706487(5) Stable 3/2+ 0.932581(44)
40K[n 7][n 8] 19 21 39.96399817(6) 1.248(3)×109 y β (89.28%) 40Ca 4− 1.17(1)×10−4
EC (10.72%) 40Ar
β+ (0.001%)[9]
40mK 1643.639(11) keV 336(12) ns IT 40K 0+
41K 19 22 40.961825258(4) Stable 3/2+ 0.067302(44)
42K 19 23 41.96240231(11) 12.355(7) h β 42Ca 2− Trace[n 9]
43K 19 24 42.9607347(4) 22.3(1) h β 43Ca 3/2+
43mK 738.30(6) keV 200(5) ns IT 43K 7/2−
44K 19 25 43.9615870(5) 22.13(19) min β 44Ca 2−
45K 19 26 44.9606915(6) 17.8(6) min β 45Ca 3/2+
46K 19 27 45.9619816(8) 105(10) s β 46Ca 2−
47K 19 28 46.9616616(15) 17.50(24) s β 47Ca 1/2+
48K 19 29 47.9653412(8) 6.8(2) s β (98.86%) 48Ca 1−
β, n (1.14%) 47Ca
49K 19 30 48.9682108(9) 1.26(5) s β, n (86%) 48Ca (3/2+)
β (14%) 49Ca
50K 19 31 49.972380(8) 472(4) ms β (71%) 50Ca 0−
β, n (29%) 49Ca
50mK 171.4(4) keV 125(40) ns IT 50K (2−)
51K 19 32 50.975828(14) 365(5) ms β, n (65%) 50Ca 3/2+
β (35%) 51Ca
52K 19 33 51.98160(4) 110(4) ms β, n (74%) 51Ca 2−#
β (23.7%) 52Ca
β, 2n (2.3%) 50Ca
53K 19 34 52.98680(12) 30(5) ms β, n (64%) 52Ca (3/2+)
β (26%) 53Ca
β, 2n (10%) 51Ca
54K 19 35 53.99463(64)# 10(5) ms β (>99.9%) 54Ca 2−#
β, n (<.1%) 53Ca
55K 19 36 55.00076(75)# 3# ms β 55Ca 3/2+#
β, n 54Ca
56K 19 37 56.00851(86)# 1# ms β 56Ca 2−#
β, n 55Ca
57K[10][2] 19 38 β 57Ca
59K[2][n 10] 19 40 β 59Ca
  1. mK – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 4.0 4.1 4.2 # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Bold symbol as daughter – Daughter product is stable.
  6. ( ) spin value – Indicates spin with weak assignment arguments.
  7. Used in potassium-argon dating
  8. Primordial radionuclide
  9. Decay product of 42Ar
  10. Discovery of this isotope is unconfirmed

See also

References

  1. Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry 88 (3): 265–91. doi:10.1515/pac-2015-0305. 
  2. 2.0 2.1 2.2 Tarasov, O.B. (2017). "Production of very neutron rich isotopes: What should we know?". https://sciencedocbox.com/Physics/68518403-Production-of-very-neutron-rich-isotopes-what-should-we-know.html. 
  3. "Radioactive Human Body". http://www.fas.harvard.edu/~scdiroff/lds/QuantumRelativity/RadioactiveHumanBody/RadioactiveHumanBody.html. 
  4. 4.0 4.1 "A peculiar atom shakes up assumptions of nuclear structure". Nature 573 (7773): 167. 6 September 2019. doi:10.1038/d41586-019-02655-9. PMID 31506620. Bibcode2019Natur.573T.167.. 
  5. 5.0 5.1 Kostyleva, D. (2019). "Towards the Limits of Existence of Nuclear Structure: Observation and First Spectroscopy of the Isotope 31K by Measuring Its Three-Proton Decay". Physical Review Letters 123 (9): 092502. doi:10.1103/PhysRevLett.123.092502. PMID 31524489. Bibcode2019PhRvL.123i2502K. 
  6. "Soil potassium isotope composition during four million years of ecosystem development in Hawai'i". June 2022. https://par.nsf.gov/servlets/purl/10389596. 
  7. Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties". Chinese Physics C 41 (3): 030001. doi:10.1088/1674-1137/41/3/030001. Bibcode2017ChPhC..41c0001A. https://www-nds.iaea.org/amdc/ame2016/NUBASE2016.pdf. 
  8. Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references". Chinese Physics C 41 (3): 030003-1—030003-442. doi:10.1088/1674-1137/41/3/030003. http://nuclearmasses.org/resources_folder/Wang_2017_Chinese_Phys_C_41_030003.pdf. 
  9. Engelkemeir, D. W.; Flynn, K. F.; Glendenin, L. E. (1962). "Positron Emission in the Decay of K40". Physical Review 126 (5): 1818. doi:10.1103/PhysRev.126.1818. Bibcode1962PhRv..126.1818E. 
  10. Neufcourt, L.; Cao, Y.; Nazarewicz, W.; Olsen, E.; Viens, F. (2019). "Neutron drip line in the Ca region from Bayesian model averaging". Physical Review Letters 122 (6): 062502–1–062502–6. doi:10.1103/PhysRevLett.122.062502. PMID 30822058. Bibcode2019PhRvL.122f2502N.