Physics:List of quantum-mechanical systems with analytical solutions

From HandWiki
Short description: None

Much insight in quantum mechanics can be gained from understanding the closed-form solutions to the time-dependent non-relativistic Schrödinger equation. It takes the form

[math]\displaystyle{ \hat{H} \psi\left(\mathbf{r}, t\right) = \left[ - \frac{\hbar^2}{2m} \nabla^2 + V\left(\mathbf{r}\right) \right] \psi\left(\mathbf{r}, t\right) = i\hbar \frac{\partial\psi\left(\mathbf{r}, t\right)}{\partial t}, }[/math]

where [math]\displaystyle{ \psi }[/math] is the wave function of the system, [math]\displaystyle{ \hat{H} }[/math] is the Hamiltonian operator, and [math]\displaystyle{ t }[/math] is time. Stationary states of this equation are found by solving the time-independent Schrödinger equation,

[math]\displaystyle{ \left[ - \frac{\hbar^2}{2m} \nabla^2 + V\left(\mathbf{r}\right) \right] \psi\left(\mathbf{r}\right) = E \psi \left(\mathbf{r}\right), }[/math]

which is an eigenvalue equation. Very often, only numerical solutions to the Schrödinger equation can be found for a given physical system and its associated potential energy. However, there exists a subset of physical systems for which the form of the eigenfunctions and their associated energies, or eigenvalues, can be found. These quantum-mechanical systems with analytical solutions are listed below.

Solvable systems

See also

References

  1. Hodgson, M.J.P. (2021). Analytic solution to the time-dependent Schrödinger equation for the one-dimensional quantum harmonic oscillator with an applied uniform field. doi:10.13140/RG.2.2.12867.32809. 
  2. Scott, T.C.; Zhang, Wenxing (2015). "Efficient hybrid-symbolic methods for quantum mechanical calculations". Computer Physics Communications 191: 221–234. doi:10.1016/j.cpc.2015.02.009. Bibcode2015CoPhC.191..221S. 
  3. Ren, S. Y. (2002). "Two Types of Electronic States in One-Dimensional Crystals of Finite Length". Annals of Physics 301 (1): 22–30. doi:10.1006/aphy.2002.6298. Bibcode2002AnPhy.301...22R. 
  4. Sever; Bucurgat; Tezcan; Yesiltas (2007). "Bound state solution of the Schrödinger equation for Mie potential". Journal of Mathematical Chemistry 43 (2): 749–755. doi:10.1007/s10910-007-9228-8. 
  5. Busch, Thomas; Englert, Berthold-Georg; Rzażewski, Kazimierz; Wilkens, Martin (1998). "Two Cold Atoms in a Harmonic Trap". Foundations of Physics 27 (4): 549–559. doi:10.1023/A:1018705520999. 
  6. Ishkhanyan, A. M. (2015). "Exact solution of the Schrödinger equation for the inverse square root potential [math]\displaystyle{ V_{0} /\sqrt{x} }[/math]". Europhysics Letters 112 (1): 10006. doi:10.1209/0295-5075/112/10006. 
  7. N. A. Sinitsyn; V. Y. Chernyak (2017). "The Quest for Solvable Multistate Landau-Zener Models". Journal of Physics A: Mathematical and Theoretical 50 (25): 255203. doi:10.1088/1751-8121/aa6800. Bibcode2017JPhA...50y5203S. 

Reading materials