Physics:Timeline of computational physics

From HandWiki
Short description: None


The following timeline starts with the invention of the modern computer in the late interwar period.

1930s

1940s

1950s

1960s

1970s

1980s

See also

References

  1. Ballistic Research Laboratory, Aberdeen Proving Grounds, Maryland.
  2. "MATH 6140 - Top ten algorithms from the 20th Century". http://www.math.cornell.edu/~web6140/. 
  3. Metropolis, N. (1987). "The Beginning of the Monte Carlo method". Los Alamos Science No. 15, Page 125. http://library.lanl.gov/cgi-bin/getfile?15-12.pdf. . Accessed 5 May 2012.
  4. S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
  5. N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335–341.
  6. Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
  7. A Method for the Numerical Calculation of Hydrodynamic Shocks. Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21, pp. 232–237
  8. Von Neumann, J., Theory of Self-Reproducing Automata, Univ. of Illinois Press, Urbana, 1966.
  9. "Cellular Automaton". http://mathworld.wolfram.com/CellularAutomaton.html. 
  10. "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics 21 (6): 1087–1092. 1953. doi:10.1063/1.1699114. Bibcode1953JChPh..21.1087M. 
  11. Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. Alder, B. J., Frankel, S. P., and Lewinson, B. A., J. Chem. Phys., 23, 3 (1955).
  12. Reed, Mark M.. "Stan Frankel". http://www.hp9825.com/html/stan_frankel.html. Retrieved 1 December 2017. 
  13. Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed., University of Chicago Press, Vol.II,978–988,1965. Recovered 21 December 2012
  14. Broadbent, S. R.; Hammersley, J. M. (2008). "Percolation processes". Math. Proc. of the Camb. Philo. Soc.; 53 (3): 629.
  15. Alder, B. J.; Wainwright, T. E. (1959). "Studies in Molecular Dynamics. I. General Method". Journal of Chemical Physics 31 (2): 459. doi:10.1063/1.1730376. Bibcode1959JChPh..31..459A. 
  16. Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).
  17. Christopher Riley and Dallas Campbell, 22 October 2012. "The maths that made Voyager possible" . BBC News Science and Environment. Recovered 16 June 2013.
  18. R. J. Glauber. "Time-dependent statistics of the Ising model, J. Math. Phys. 4 (1963), 294–307.
  19. Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow". Journal of the Atmospheric Sciences 20 (2): 130–141. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. Bibcode1963JAtS...20..130L. http://www.nd.edu/~powers/ame.60611/lorenz.article.pdf. 
  20. Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev 136 (2A): A405–A41. doi:10.1103/PhysRev.136.A405. Bibcode1964PhRv..136..405R. 
  21. Kohn, Walter; Hohenberg, Pierre (1964). "Inhomogeneous Electron Gas". Physical Review 136 (3B): B864–B871. doi:10.1103/PhysRev.136.B864. Bibcode1964PhRv..136..864H. 
  22. Kohn, Walter; Sham, Lu Jeu (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review 140 (4A): A1133–A1138. doi:10.1103/PHYSREV.140.A1133. Bibcode1965PhRv..140.1133K. 
  23. "The Nobel Prize in Chemistry 1998". Nobelprize.org. http://nobelprize.org/nobel_prizes/chemistry/laureates/1998/index.html. Retrieved 6 October 2008. 
  24. Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
  25. "Definition of SOLITON". http://www.merriam-webster.com/dictionary/soliton. Retrieved 1 December 2017. 
  26. K. Kawasaki, "Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I. Phys. Rev. 145, 224 (1966)
  27. 27.0 27.1 "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules". Physical Review 159 (1): 98–103. 1967. doi:10.1103/PhysRev.159.98. Bibcode1967PhRv..159...98V. 
  28. Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 17.4. Second-Order Conservative Equations". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8. http://apps.nrbook.com/empanel/index.html#pg=928. 
  29. Brackx, F.; Constales, D. (30 November 1991) (in en). Computer Algebra with LISP and REDUCE: An Introduction to Computer-aided Pure Mathematics. Springer Science & Business Media. ISBN 9780792314417. https://books.google.com/books?id=d7SZ8ppIUb0C&q=delaunay+computational+algebra&pg=PA3. 
  30. Contopoulos, George (16 June 2004) (in en). Order and Chaos in Dynamical Astronomy. Springer Science & Business Media. ISBN 9783540433606. https://books.google.com/books?id=7YkDhZCCLR4C&q=delaunay+computational+algebra+lunar&pg=PA1. 
  31. "Implementing a computer algebra system in Haskell". http://www.repositorio.ufop.br/bitstream/123456789/4361/1/ARTIGO_ImplementingComputerAlgebra.pdf. Retrieved 1 December 2017. 
  32. "Computer Algebra". http://www.mosaicsciencemagazine.org/pdf/m24_04_91_03.pdf. Retrieved 1 December 2017. 
  33. [1] [|permanent dead link|dead link}}]
  34. Frank Close. The Infinity Puzzle, pg 207. OUP, 2011.
  35. Stefan Weinzierl:- "Computer Algebra in Particle Physics." pgs 5–7. arXiv:hep-ph/0209234. All links accessed 1 January 2012. "Seminario Nazionale di Fisica Teorica", Parma, September 2002.
  36. J. Hardy, Y. Pomeau, and O. de Pazzis (1973). "Time evolution of two-dimensional model system I: invariant states and time correlation functions". Journal of Mathematical Physics, 14:1746–1759.
  37. J. Hardy, O. de Pazzis, and Y. Pomeau (1976). "Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions". Physical Review A, 13:1949–1961.
  38. Wilson, K. (1974). "Confinement of quarks". Physical Review D 10 (8): 2445. doi:10.1103/PhysRevD.10.2445. Bibcode1974PhRvD..10.2445W. 
  39. Car, R.; Parrinello, M (1985). "Unified Approach for Molecular Dynamics and Density-Functional Theory". Physical Review Letters 55 (22): 2471–2474. doi:10.1103/PhysRevLett.55.2471. PMID 10032153. Bibcode1985PhRvL..55.2471C. 
  40. Swendsen, R. H., and Wang, J.-S. (1987), Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58(2):86–88.
  41. L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
  42. Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
  43. L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
  44. Wolff, Ulli (1989), "Collective Monte Carlo Updating for Spin Systems", Physical Review Letters, 62 (4): 361

External links