Smith space

From HandWiki

In functional analysis and related areas of mathematics, a Smith space is a complete compactly generated locally convex topological vector space [math]\displaystyle{ X }[/math] having a universal compact set, i.e. a compact set [math]\displaystyle{ K }[/math] which absorbs every other compact set [math]\displaystyle{ T\subseteq X }[/math] (i.e. [math]\displaystyle{ T\subseteq\lambda\cdot K }[/math] for some [math]\displaystyle{ \lambda\gt 0 }[/math]). Smith spaces are named after Marianne Ruth Freundlich Smith, who introduced them[1] as duals to Banach spaces in some versions of duality theory for topological vector spaces. All Smith spaces are stereotype and are in the stereotype duality relations with Banach spaces:[2][3]

  • for any Banach space [math]\displaystyle{ X }[/math] its stereotype dual space[4] [math]\displaystyle{ X^\star }[/math] is a Smith space,
  • and vice versa, for any Smith space [math]\displaystyle{ X }[/math] its stereotype dual space [math]\displaystyle{ X^\star }[/math] is a Banach space.

Smith spaces are special cases of Brauner spaces.

Examples

  • As follows from the duality theorems, for any Banach space [math]\displaystyle{ X }[/math] its stereotype dual space [math]\displaystyle{ X^\star }[/math] is a Smith space. The polar [math]\displaystyle{ K=B^\circ }[/math] of the unit ball [math]\displaystyle{ B }[/math] in [math]\displaystyle{ X }[/math] is the universal compact set in [math]\displaystyle{ X^\star }[/math]. If [math]\displaystyle{ X^* }[/math] denotes the normed dual space for [math]\displaystyle{ X }[/math], and [math]\displaystyle{ X' }[/math] the space [math]\displaystyle{ X^* }[/math] endowed with the [math]\displaystyle{ X }[/math]-weak topology, then the topology of [math]\displaystyle{ X^\star }[/math] lies between the topology of [math]\displaystyle{ X^* }[/math] and the topology of [math]\displaystyle{ X' }[/math], so there are natural (linear continuous) bijections
[math]\displaystyle{ X^*\to X^\star\to X'. }[/math]
If [math]\displaystyle{ X }[/math] is infinite-dimensional, then no two of these topologies coincide. At the same time, for infinite dimensional [math]\displaystyle{ X }[/math] the space [math]\displaystyle{ X^\star }[/math] is not barreled (and even is not a Mackey space if [math]\displaystyle{ X }[/math] is reflexive as a Banach space[5]).
  • If [math]\displaystyle{ K }[/math] is a convex balanced compact set in a locally convex space [math]\displaystyle{ Y }[/math], then its linear span [math]\displaystyle{ {\mathbb C}K=\operatorname{span}(K) }[/math] possesses a unique structure of a Smith space with [math]\displaystyle{ K }[/math] as the universal compact set (and with the same topology on [math]\displaystyle{ K }[/math]).[6]
  • If [math]\displaystyle{ M }[/math] is a (Hausdorff) compact topological space, and [math]\displaystyle{ {\mathcal C}(M) }[/math] the Banach space of continuous functions on [math]\displaystyle{ M }[/math] (with the usual sup-norm), then the stereotype dual space [math]\displaystyle{ {\mathcal C}^\star(M) }[/math] (of Radon measures on [math]\displaystyle{ M }[/math] with the topology of uniform convergence on compact sets in [math]\displaystyle{ {\mathcal C}(M) }[/math]) is a Smith space. In the special case when [math]\displaystyle{ M=G }[/math] is endowed with a structure of a topological group the space [math]\displaystyle{ {\mathcal C}^\star(G) }[/math] becomes a natural example of a stereotype group algebra.[7]
  • A Banach space [math]\displaystyle{ X }[/math] is a Smith space if and only if [math]\displaystyle{ X }[/math] is finite-dimensional.

See also

Notes

  1. Smith 1952.
  2. Akbarov 2003, p. 220.
  3. Akbarov 2009, p. 467.
  4. The stereotype dual space to a locally convex space [math]\displaystyle{ X }[/math] is the space [math]\displaystyle{ X^\star }[/math] of all linear continuous functionals [math]\displaystyle{ f:X\to\mathbb{C} }[/math] endowed with the topology of uniform convergence on totally bounded sets in [math]\displaystyle{ X }[/math].
  5. Akbarov 2003, p. 221, Example 4.8.
  6. Akbarov 2009, p. 468.
  7. Akbarov 2003, p. 272.

References

  • Smith, M.F. (1952). "The Pontrjagin duality theorem in linear spaces". Annals of Mathematics 56 (2): 248–253. doi:10.2307/1969798. 
  • Akbarov, S.S. (2003). "Pontryagin duality in the theory of topological vector spaces and in topological algebra". Journal of Mathematical Sciences 113 (2): 179–349. doi:10.1023/A:1020929201133. 
  • Akbarov, S.S. (2009). "Holomorphic functions of exponential type and duality for Stein groups with algebraic connected component of identity". Journal of Mathematical Sciences 162 (4): 459–586. doi:10.1007/s10958-009-9646-1. 
  • Furber, R.W.J. (2017). Categorical Duality in Probability and Quantum Foundations (PDF) (PhD). Radboud University.