Balanced set
In linear algebra and related areas of mathematics a balanced set, circled set or disk in a vector space (over a field [math]\displaystyle{ \mathbb{K} }[/math] with an absolute value function [math]\displaystyle{ |\cdot | }[/math]) is a set [math]\displaystyle{ S }[/math] such that [math]\displaystyle{ a S \subseteq S }[/math] for all scalars [math]\displaystyle{ a }[/math] satisfying [math]\displaystyle{ |a| \leq 1. }[/math]
The balanced hull or balanced envelope of a set [math]\displaystyle{ S }[/math] is the smallest balanced set containing [math]\displaystyle{ S. }[/math] The balanced core of a set [math]\displaystyle{ S }[/math] is the largest balanced set contained in [math]\displaystyle{ S. }[/math]
Balanced sets are ubiquitous in functional analysis because every neighborhood of the origin in every topological vector space (TVS) contains a balanced neighborhood of the origin and every convex neighborhood of the origin contains a balanced convex neighborhood of the origin (even if the TVS is not locally convex). This neighborhood can also be chosen to be an open set or, alternatively, a closed set.
Definition
Let [math]\displaystyle{ X }[/math] be a vector space over the field [math]\displaystyle{ \mathbb{K} }[/math] of real or complex numbers.
Notation
If [math]\displaystyle{ S }[/math] is a set, [math]\displaystyle{ a }[/math] is a scalar, and [math]\displaystyle{ B \subseteq \mathbb{K} }[/math] then let [math]\displaystyle{ a S = \{a s : s \in S\} }[/math] and [math]\displaystyle{ B S = \{b s : b \in B, s \in S\} }[/math] and for any [math]\displaystyle{ 0 \leq r \leq \infty, }[/math] let [math]\displaystyle{ B_r = \{a \in \mathbb{K} : |a| \lt r\} \qquad \text{ and } \qquad B_{\leq r} = \{ a \in \mathbb{K} : |a| \leq r\}. }[/math] denote, respectively, the open ball and the closed ball of radius [math]\displaystyle{ r }[/math] in the scalar field [math]\displaystyle{ \mathbb{K} }[/math] centered at [math]\displaystyle{ 0 }[/math] where [math]\displaystyle{ B_0 = \varnothing, B_{\leq 0} = \{0\}, }[/math] and [math]\displaystyle{ B_{\infty} = B_{\leq \infty} = \mathbb{K}. }[/math] Every balanced subset of the field [math]\displaystyle{ \mathbb{K} }[/math] is of the form [math]\displaystyle{ B_{\leq r} }[/math] or [math]\displaystyle{ B_r }[/math] for some [math]\displaystyle{ 0 \leq r \leq \infty. }[/math]
Balanced set
A subset [math]\displaystyle{ S }[/math] of [math]\displaystyle{ X }[/math] is called a balanced set or balanced if it satisfies any of the following equivalent conditions:
- Definition: [math]\displaystyle{ a s \in S }[/math] for all [math]\displaystyle{ s \in S }[/math] and all scalars [math]\displaystyle{ a }[/math] satisfying [math]\displaystyle{ |a| \leq 1. }[/math]
- [math]\displaystyle{ a S \subseteq S }[/math] for all scalars [math]\displaystyle{ a }[/math] satisfying [math]\displaystyle{ |a| \leq 1. }[/math]
- [math]\displaystyle{ B_{\leq 1} S \subseteq S }[/math] (where [math]\displaystyle{ B_{\leq 1} := \{a \in \mathbb{K} : |a| \leq 1\} }[/math]).
- [math]\displaystyle{ S = B_{\leq 1} S. }[/math][1]
- For every [math]\displaystyle{ s \in S, }[/math] [math]\displaystyle{ S \cap \mathbb{K} s = B_{\leq 1} (S \cap \mathbb{K} s). }[/math]
- [math]\displaystyle{ \mathbb{K} s = \operatorname{span} \{s\} }[/math] is a [math]\displaystyle{ 0 }[/math] (if [math]\displaystyle{ s = 0 }[/math]) or [math]\displaystyle{ 1 }[/math] (if [math]\displaystyle{ s \neq 0 }[/math]) dimensional vector subspace of [math]\displaystyle{ X. }[/math]
- If [math]\displaystyle{ R := S \cap \mathbb{K} s }[/math] then the above equality becomes [math]\displaystyle{ R = B_{\leq 1} R, }[/math] which is exactly the previous condition for a set to be balanced. Thus, [math]\displaystyle{ S }[/math] is balanced if and only if for every [math]\displaystyle{ s \in S, }[/math] [math]\displaystyle{ S \cap \mathbb{K} s }[/math] is a balanced set (according to any of the previous defining conditions).
- For every 1-dimensional vector subspace [math]\displaystyle{ Y }[/math] of [math]\displaystyle{ \operatorname{span} S, }[/math] [math]\displaystyle{ S \cap Y }[/math] is a balanced set (according to any defining condition other than this one).
- For every [math]\displaystyle{ s \in S, }[/math] there exists some [math]\displaystyle{ 0 \leq r \leq \infty }[/math] such that [math]\displaystyle{ S \cap \mathbb{K} s = B_r s }[/math] or [math]\displaystyle{ S \cap \mathbb{K} s = B_{\leq r} s. }[/math]
- [math]\displaystyle{ S }[/math] is a balanced subset of [math]\displaystyle{ \operatorname{span} S }[/math] (according to any defining condition of "balanced" other than this one).
- Thus [math]\displaystyle{ S }[/math] is a balanced subset of [math]\displaystyle{ X }[/math] if and only if it is balanced subset of every (equivalently, of some) vector space over the field [math]\displaystyle{ \mathbb{K} }[/math] that contains [math]\displaystyle{ S. }[/math] So assuming that the field [math]\displaystyle{ \mathbb{K} }[/math] is clear from context, this justifies writing "[math]\displaystyle{ S }[/math] is balanced" without mentioning any vector space.[note 1]
If [math]\displaystyle{ S }[/math] is a convex set then this list may be extended to include:
- [math]\displaystyle{ a S \subseteq S }[/math] for all scalars [math]\displaystyle{ a }[/math] satisfying [math]\displaystyle{ |a| = 1. }[/math][2]
If [math]\displaystyle{ \mathbb{K} = \R }[/math] then this list may be extended to include:
- [math]\displaystyle{ S }[/math] is symmetric (meaning [math]\displaystyle{ - S = S }[/math]) and [math]\displaystyle{ [0, 1) S \subseteq S. }[/math]
Balanced hull
[math]\displaystyle{ \operatorname{bal} S ~=~ \bigcup_{|a| \leq 1} a S = B_{\leq 1} S }[/math]
The balanced hull of a subset [math]\displaystyle{ S }[/math] of [math]\displaystyle{ X, }[/math] denoted by [math]\displaystyle{ \operatorname{bal} S, }[/math] is defined in any of the following equivalent ways:
- Definition: [math]\displaystyle{ \operatorname{bal} S }[/math] is the smallest (with respect to [math]\displaystyle{ \,\subseteq\, }[/math]) balanced subset of [math]\displaystyle{ X }[/math] containing [math]\displaystyle{ S. }[/math]
- [math]\displaystyle{ \operatorname{bal} S }[/math] is the intersection of all balanced sets containing [math]\displaystyle{ S. }[/math]
- [math]\displaystyle{ \operatorname{bal} S = \bigcup_{|a| \leq 1} (a S). }[/math]
- [math]\displaystyle{ \operatorname{bal} S = B_{\leq 1} S. }[/math][1]
Balanced core
[math]\displaystyle{ \operatorname{balcore} S ~=~ \begin{cases} \displaystyle\bigcap_{|a| \geq 1} a S & \text{ if } 0 \in S \\ \varnothing & \text{ if } 0 \not\in S \\ \end{cases} }[/math]
The balanced core of a subset [math]\displaystyle{ S }[/math] of [math]\displaystyle{ X, }[/math] denoted by [math]\displaystyle{ \operatorname{balcore} S, }[/math] is defined in any of the following equivalent ways:
- Definition: [math]\displaystyle{ \operatorname{balcore} S }[/math] is the largest (with respect to [math]\displaystyle{ \,\subseteq\, }[/math]) balanced subset of [math]\displaystyle{ S. }[/math]
- [math]\displaystyle{ \operatorname{balcore} S }[/math] is the union of all balanced subsets of [math]\displaystyle{ S. }[/math]
- [math]\displaystyle{ \operatorname{balcore} S = \varnothing }[/math] if [math]\displaystyle{ 0 \not\in S }[/math] while [math]\displaystyle{ \operatorname{balcore} S = \bigcap_{|a| \geq 1} (a S) }[/math] if [math]\displaystyle{ 0 \in S. }[/math]
Examples
The empty set is a balanced set. As is any vector subspace of any (real or complex) vector space. In particular, [math]\displaystyle{ \{0\} }[/math] is always a balanced set.
Any non-empty set that does not contain the origin is not balanced and furthermore, the balanced core of such a set will equal the empty set.
Normed and topological vectors spaces
The open and closed balls centered at the origin in a normed vector space are balanced sets. If [math]\displaystyle{ p }[/math] is a seminorm (or norm) on a vector space [math]\displaystyle{ X }[/math] then for any constant [math]\displaystyle{ c \gt 0, }[/math] the set [math]\displaystyle{ \{x \in X : p(x) \leq c\} }[/math] is balanced.
If [math]\displaystyle{ S \subseteq X }[/math] is any subset and [math]\displaystyle{ B_1 := \{a \in \mathbb{K} : |a| \lt 1\} }[/math] then [math]\displaystyle{ B_1 S }[/math] is a balanced set. In particular, if [math]\displaystyle{ U \subseteq X }[/math] is any balanced neighborhood of the origin in a topological vector space [math]\displaystyle{ X }[/math] then [math]\displaystyle{ \operatorname{Int}_X U ~\subseteq~ B_1 U ~=~ \bigcup_{0 \lt |a| \lt 1} a U ~\subseteq~ U. }[/math]
Balanced sets in [math]\displaystyle{ \R }[/math] and [math]\displaystyle{ \Complex }[/math]
Let [math]\displaystyle{ \mathbb{K} }[/math] be the field real numbers [math]\displaystyle{ \R }[/math] or complex numbers [math]\displaystyle{ \Complex, }[/math] let [math]\displaystyle{ |\cdot| }[/math] denote the absolute value on [math]\displaystyle{ \mathbb{K}, }[/math] and let [math]\displaystyle{ X := \mathbb{K} }[/math] denotes the vector space over [math]\displaystyle{ \mathbb{K}. }[/math] So for example, if [math]\displaystyle{ \mathbb{K} := \Complex }[/math] is the field of complex numbers then [math]\displaystyle{ X = \mathbb{K} = \Complex }[/math] is a 1-dimensional complex vector space whereas if [math]\displaystyle{ \mathbb{K} := \R }[/math] then [math]\displaystyle{ X = \mathbb{K} = \R }[/math] is a 1-dimensional real vector space.
The balanced subsets of [math]\displaystyle{ X = \mathbb{K} }[/math] are exactly the following:[3]
- [math]\displaystyle{ \varnothing }[/math]
- [math]\displaystyle{ X }[/math]
- [math]\displaystyle{ \{0\} }[/math]
- [math]\displaystyle{ \{x \in X : |x| \lt r\} }[/math] for some real [math]\displaystyle{ r \gt 0 }[/math]
- [math]\displaystyle{ \{x \in X : |x| \leq r\} }[/math] for some real [math]\displaystyle{ r \gt 0. }[/math]
Consequently, both the balanced core and the balanced hull of every set of scalars is equal to one of the sets listed above.
The balanced sets are [math]\displaystyle{ \Complex }[/math] itself, the empty set and the open and closed discs centered at zero. Contrariwise, in the two dimensional Euclidean space there are many more balanced sets: any line segment with midpoint at the origin will do. As a result, [math]\displaystyle{ \Complex }[/math] and [math]\displaystyle{ \R^2 }[/math] are entirely different as far as scalar multiplication is concerned.
Balanced sets in [math]\displaystyle{ \R^2 }[/math]
Throughout, let [math]\displaystyle{ X = \R^2 }[/math] (so [math]\displaystyle{ X }[/math] is a vector space over [math]\displaystyle{ \R }[/math]) and let [math]\displaystyle{ B_{\leq 1} }[/math] is the closed unit ball in [math]\displaystyle{ X }[/math] centered at the origin.
If [math]\displaystyle{ x_0 \in X = \R^2 }[/math] is non-zero, and [math]\displaystyle{ L := \R x_0, }[/math] then the set [math]\displaystyle{ R := B_{\leq 1} \cup L }[/math] is a closed, symmetric, and balanced neighborhood of the origin in [math]\displaystyle{ X. }[/math] More generally, if [math]\displaystyle{ C }[/math] is any closed subset of [math]\displaystyle{ X }[/math] such that [math]\displaystyle{ (0, 1) C \subseteq C, }[/math] then [math]\displaystyle{ S := B_{\leq 1} \cup C \cup (-C) }[/math] is a closed, symmetric, and balanced neighborhood of the origin in [math]\displaystyle{ X. }[/math] This example can be generalized to [math]\displaystyle{ \R^n }[/math] for any integer [math]\displaystyle{ n \geq 1. }[/math]
Let [math]\displaystyle{ B \subseteq \R^2 }[/math] be the union of the line segment between the points [math]\displaystyle{ (-1, 0) }[/math] and [math]\displaystyle{ (1, 0) }[/math] and the line segment between [math]\displaystyle{ (0, -1) }[/math] and [math]\displaystyle{ (0, 1). }[/math] Then [math]\displaystyle{ B }[/math] is balanced but not convex. Nor is [math]\displaystyle{ B }[/math] is absorbing (despite the fact that [math]\displaystyle{ \operatorname{span} B = \R^2 }[/math] is the entire vector space).
For every [math]\displaystyle{ 0 \leq t \leq \pi, }[/math] let [math]\displaystyle{ r_t }[/math] be any positive real number and let [math]\displaystyle{ B^t }[/math] be the (open or closed) line segment in [math]\displaystyle{ X := \R^2 }[/math] between the points [math]\displaystyle{ (\cos t, \sin t) }[/math] and [math]\displaystyle{ - (\cos t, \sin t). }[/math] Then the set [math]\displaystyle{ B = \bigcup_{0 \leq t \lt \pi} r_t B^t }[/math] is a balanced and absorbing set but it is not necessarily convex.
The balanced hull of a closed set need not be closed. Take for instance the graph of [math]\displaystyle{ x y = 1 }[/math] in [math]\displaystyle{ X = \R^2. }[/math]
The next example shows that the balanced hull of a convex set may fail to be convex (however, the convex hull of a balanced set is always balanced). For an example, let the convex subset be [math]\displaystyle{ S := [-1, 1] \times \{1\}, }[/math] which is a horizontal closed line segment lying above the [math]\displaystyle{ x- }[/math]axis in [math]\displaystyle{ X := \R^2. }[/math] The balanced hull [math]\displaystyle{ \operatorname{bal} S }[/math] is a non-convex subset that is "hour glass shaped" and equal to the union of two closed and filled isosceles triangles [math]\displaystyle{ T_1 }[/math] and [math]\displaystyle{ T_2, }[/math] where [math]\displaystyle{ T_2 = - T_1 }[/math] and [math]\displaystyle{ T_1 }[/math] is the filled triangle whose vertices are the origin together with the endpoints of [math]\displaystyle{ S }[/math] (said differently, [math]\displaystyle{ T_1 }[/math] is the convex hull of [math]\displaystyle{ S \cup \{(0,0)\} }[/math] while [math]\displaystyle{ T_2 }[/math] is the convex hull of [math]\displaystyle{ (-S) \cup \{(0,0)\} }[/math]).
Sufficient conditions
A set [math]\displaystyle{ T }[/math] is balanced if and only if it is equal to its balanced hull [math]\displaystyle{ \operatorname{bal} T }[/math] or to its balanced core [math]\displaystyle{ \operatorname{balcore} T, }[/math] in which case all three of these sets are equal: [math]\displaystyle{ T = \operatorname{bal} T = \operatorname{balcore} T. }[/math]
The Cartesian product of a family of balanced sets is balanced in the product space of the corresponding vector spaces (over the same field [math]\displaystyle{ \mathbb{K} }[/math]).
- The balanced hull of a compact (respectively, totally bounded, bounded) set has the same property.[4]
- The convex hull of a balanced set is convex and balanced (that is, it is absolutely convex). However, the balanced hull of a convex set may fail to be convex (a counter-example is given above).
- Arbitrary unions of balanced sets are balanced, and the same is true of arbitrary intersections of balanced sets.
- Scalar multiples and (finite) Minkowski sums of balanced sets are again balanced.
- Images and preimages of balanced sets under linear maps are again balanced. Explicitly, if [math]\displaystyle{ L : X \to Y }[/math] is a linear map and [math]\displaystyle{ B \subseteq X }[/math] and [math]\displaystyle{ C \subseteq Y }[/math] are balanced sets, then [math]\displaystyle{ L(B) }[/math] and [math]\displaystyle{ L^{-1}(C) }[/math] are balanced sets.
Balanced neighborhoods
In any topological vector space, the closure of a balanced set is balanced.[5] The union of the origin [math]\displaystyle{ \{0\} }[/math] and the topological interior of a balanced set is balanced. Therefore, the topological interior of a balanced neighborhood of the origin is balanced.[5][proof 1] However, [math]\displaystyle{ \left\{(z, w) \in \Complex^2 : |z| \leq |w|\right\} }[/math] is a balanced subset of [math]\displaystyle{ X = \Complex^2 }[/math] that contains the origin [math]\displaystyle{ (0, 0) \in X }[/math] but whose (nonempty) topological interior does not contain the origin and is therefore not a balanced set.[6] Similarly for real vector spaces, if [math]\displaystyle{ T }[/math] denotes the convex hull of [math]\displaystyle{ (0, 0) }[/math] and [math]\displaystyle{ (\pm 1, 1) }[/math] (a filled triangle whose vertices are these three points) then [math]\displaystyle{ B := T \cup (-T) }[/math] is an (hour glass shaped) balanced subset of [math]\displaystyle{ X := \Reals^2 }[/math] whose non-empty topological interior does not contain the origin and so is not a balanced set (and although the set [math]\displaystyle{ \{(0, 0)\} \cup \operatorname{Int}_X B }[/math] formed by adding the origin is balanced, it is neither an open set nor a neighborhood of the origin).
Every neighborhood (respectively, convex neighborhood) of the origin in a topological vector space [math]\displaystyle{ X }[/math] contains a balanced (respectively, convex and balanced) open neighborhood of the origin. In fact, the following construction produces such balanced sets. Given [math]\displaystyle{ W \subseteq X, }[/math] the symmetric set [math]\displaystyle{ \bigcap_{|u|=1} u W \subseteq W }[/math] will be convex (respectively, closed, balanced, bounded, a neighborhood of the origin, an absorbing subset of [math]\displaystyle{ X }[/math]) whenever this is true of [math]\displaystyle{ W. }[/math] It will be a balanced set if [math]\displaystyle{ W }[/math] is a star shaped at the origin,[note 2] which is true, for instance, when [math]\displaystyle{ W }[/math] is convex and contains [math]\displaystyle{ 0. }[/math] In particular, if [math]\displaystyle{ W }[/math] is a convex neighborhood of the origin then [math]\displaystyle{ \bigcap_{|u|=1} u W }[/math] will be a balanced convex neighborhood of the origin and so its topological interior will be a balanced convex open neighborhood of the origin.[5]
Let [math]\displaystyle{ 0 \in W \subseteq X }[/math] and define [math]\displaystyle{ A = \bigcap_{|u|=1} u W }[/math] (where [math]\displaystyle{ u }[/math] denotes elements of the field [math]\displaystyle{ \mathbb{K} }[/math] of scalars). Taking [math]\displaystyle{ u := 1 }[/math] shows that [math]\displaystyle{ A \subseteq W. }[/math] If [math]\displaystyle{ W }[/math] is convex then so is [math]\displaystyle{ A }[/math] (since an intersection of convex sets is convex) and thus so is [math]\displaystyle{ A }[/math]'s interior. If [math]\displaystyle{ |s| = 1 }[/math] then [math]\displaystyle{ s A = \bigcap_{|u|=1} s u W \subseteq \bigcap_{|u|=1} u W = A }[/math] and thus [math]\displaystyle{ s A = A. }[/math] If [math]\displaystyle{ W }[/math] is star shaped at the origin[note 2] then so is every [math]\displaystyle{ u W }[/math] (for [math]\displaystyle{ |u| = 1 }[/math]), which implies that for any [math]\displaystyle{ 0 \leq r \leq 1, }[/math] [math]\displaystyle{ r A = \bigcap_{|u|=1} r u W \subseteq \bigcap_{|u|=1} u W = A }[/math] thus proving that [math]\displaystyle{ A }[/math] is balanced. If [math]\displaystyle{ W }[/math] is convex and contains the origin then it is star shaped at the origin and so [math]\displaystyle{ A }[/math] will be balanced.
Now suppose [math]\displaystyle{ W }[/math] is a neighborhood of the origin in [math]\displaystyle{ X. }[/math] Since scalar multiplication [math]\displaystyle{ M : \mathbb{K} \times X \to X }[/math] (defined by [math]\displaystyle{ M(a, x) = a x }[/math]) is continuous at the origin [math]\displaystyle{ (0, 0) \in \mathbb{K} \times X }[/math] and [math]\displaystyle{ M(0, 0) = 0 \in W, }[/math] there exists some basic open neighborhood [math]\displaystyle{ B_r \times V }[/math] (where [math]\displaystyle{ r \gt 0 }[/math] and [math]\displaystyle{ B_r := \{c \in \mathbb{K} : |c| \lt r\} }[/math]) of the origin in the product topology on [math]\displaystyle{ \mathbb{K} \times X }[/math] such that [math]\displaystyle{ M\left(B_r \times V\right) \subseteq W; }[/math] the set [math]\displaystyle{ M\left(B_r \times V\right) = B_r V }[/math] is balanced and it is also open because it may be written as [math]\displaystyle{ B_r V = \bigcup_{|a| \lt r} a V = \bigcup_{0 \lt |a| \lt r} a V \qquad \text{ (since } 0 \cdot V = \{0\} \subseteq a V \text{ )} }[/math] where [math]\displaystyle{ a V }[/math] is an open neighborhood of the origin whenever [math]\displaystyle{ a \neq 0. }[/math] Finally, [math]\displaystyle{ A = \bigcap_{|u|=1} u W \supseteq \bigcap_{|u|=1} u B_r V = \bigcap_{|u|=1} B_r V = B_r V }[/math] shows that [math]\displaystyle{ A }[/math] is also a neighborhood of the origin. If [math]\displaystyle{ A }[/math] is balanced then because its interior [math]\displaystyle{ \operatorname{Int}_X A }[/math] contains the origin, [math]\displaystyle{ \operatorname{Int}_X A }[/math] will also be balanced. If [math]\displaystyle{ W }[/math] is convex then [math]\displaystyle{ A }[/math] is convex and balanced and thus the same is true of [math]\displaystyle{ \operatorname{Int}_X A. }[/math] [math]\displaystyle{ \blacksquare }[/math]
Suppose that [math]\displaystyle{ W }[/math] is a convex and absorbing subset of [math]\displaystyle{ X. }[/math] Then [math]\displaystyle{ D := \bigcap_{|u|=1} u W }[/math] will be convex balanced absorbing subset of [math]\displaystyle{ X, }[/math] which guarantees that the Minkowski functional [math]\displaystyle{ p_D : X \to \R }[/math] of [math]\displaystyle{ D }[/math] will be a seminorm on [math]\displaystyle{ X, }[/math] thereby making [math]\displaystyle{ \left(X, p_D\right) }[/math] into a seminormed space that carries its canonical pseduometrizable topology. The set of scalar multiples [math]\displaystyle{ r D }[/math] as [math]\displaystyle{ r }[/math] ranges over [math]\displaystyle{ \left\{\tfrac{1}{2}, \tfrac{1}{3}, \tfrac{1}{4}, \ldots\right\} }[/math] (or over any other set of non-zero scalars having [math]\displaystyle{ 0 }[/math] as a limit point) forms a neighborhood basis of absorbing disks at the origin for this locally convex topology. If [math]\displaystyle{ X }[/math] is a topological vector space and if this convex absorbing subset [math]\displaystyle{ W }[/math] is also a bounded subset of [math]\displaystyle{ X, }[/math] then the same will be true of the absorbing disk [math]\displaystyle{ D := {\textstyle\bigcap\limits_{|u|=1}} u W; }[/math] if in addition [math]\displaystyle{ D }[/math] does not contain any non-trivial vector subspace then [math]\displaystyle{ p_D }[/math] will be a norm and [math]\displaystyle{ \left(X, p_D\right) }[/math] will form what is known as an auxiliary normed space.[7] If this normed space is a Banach space then [math]\displaystyle{ D }[/math] is called a Banach disk.
Properties
Properties of balanced sets
A balanced set is not empty if and only if it contains the origin. By definition, a set is absolutely convex if and only if it is convex and balanced. Every balanced set is star-shaped (at 0) and a symmetric set. If [math]\displaystyle{ B }[/math] is a balanced subset of [math]\displaystyle{ X }[/math] then:
- for any scalars [math]\displaystyle{ c }[/math] and [math]\displaystyle{ d, }[/math] if [math]\displaystyle{ |c| \leq |d| }[/math] then [math]\displaystyle{ c B \subseteq d B }[/math] and [math]\displaystyle{ c B = |c| B. }[/math] Thus if [math]\displaystyle{ c }[/math] and [math]\displaystyle{ d }[/math] are any scalars then [math]\displaystyle{ (c B) \cap (d B) = \min_{} \{|c|, |d|\} B. }[/math]
- [math]\displaystyle{ B }[/math] is absorbing in [math]\displaystyle{ X }[/math] if and only if for all [math]\displaystyle{ x \in X, }[/math] there exists [math]\displaystyle{ r \gt 0 }[/math] such that [math]\displaystyle{ x \in r B. }[/math][2]
- for any 1-dimensional vector subspace [math]\displaystyle{ Y }[/math] of [math]\displaystyle{ X, }[/math] the set [math]\displaystyle{ B \cap Y }[/math] is convex and balanced. If [math]\displaystyle{ B }[/math] is not empty and if [math]\displaystyle{ Y }[/math] is a 1-dimensional vector subspace of [math]\displaystyle{ \operatorname{span} B }[/math] then [math]\displaystyle{ B \cap Y }[/math] is either [math]\displaystyle{ \{0\} }[/math] or else it is absorbing in [math]\displaystyle{ Y. }[/math]
- for any [math]\displaystyle{ x \in X, }[/math] if [math]\displaystyle{ B \cap \operatorname{span} x }[/math] contains more than one point then it is a convex and balanced neighborhood of [math]\displaystyle{ 0 }[/math] in the 1-dimensional vector space [math]\displaystyle{ \operatorname{span} x }[/math] when this space is endowed with the Hausdorff Euclidean topology; and the set [math]\displaystyle{ B \cap \R x }[/math] is a convex balanced subset of the real vector space [math]\displaystyle{ \R x }[/math] that contains the origin.
Properties of balanced hulls and balanced cores
For any collection [math]\displaystyle{ \mathcal{S} }[/math] of subsets of [math]\displaystyle{ X, }[/math] [math]\displaystyle{ \operatorname{bal} \left(\bigcup_{S \in \mathcal{S}} S\right) = \bigcup_{S \in \mathcal{S}} \operatorname{bal} S \quad \text{ and } \quad \operatorname{balcore} \left(\bigcap_{S \in \mathcal{S}} S\right) = \bigcap_{S \in \mathcal{S}} \operatorname{balcore} S. }[/math]
In any topological vector space, the balanced hull of any open neighborhood of the origin is again open. If [math]\displaystyle{ X }[/math] is a Hausdorff topological vector space and if [math]\displaystyle{ K }[/math] is a compact subset of [math]\displaystyle{ X }[/math] then the balanced hull of [math]\displaystyle{ K }[/math] is compact.[8]
If a set is closed (respectively, convex, absorbing, a neighborhood of the origin) then the same is true of its balanced core.
For any subset [math]\displaystyle{ S \subseteq X }[/math] and any scalar [math]\displaystyle{ c, }[/math] [math]\displaystyle{ \operatorname{bal} (c \, S) = c \operatorname{bal} S = |c| \operatorname{bal} S. }[/math]
For any scalar [math]\displaystyle{ c \neq 0, }[/math] [math]\displaystyle{ \operatorname{balcore} (c \, S) = c \operatorname{balcore} S = |c| \operatorname{balcore} S. }[/math] This equality holds for [math]\displaystyle{ c = 0 }[/math] if and only if [math]\displaystyle{ S \subseteq \{0\}. }[/math] Thus if [math]\displaystyle{ 0 \in S }[/math] or [math]\displaystyle{ S = \varnothing }[/math] then [math]\displaystyle{ \operatorname{balcore} (c \, S) = c \operatorname{balcore} S = |c| \operatorname{balcore} S }[/math] for every scalar [math]\displaystyle{ c. }[/math]
Related notions
A function [math]\displaystyle{ p : X \to [0, \infty) }[/math] on a real or complex vector space is said to be a balanced function if it satisfies any of the following equivalent conditions:[9]
- [math]\displaystyle{ p(a x) \leq p(x) }[/math] whenever [math]\displaystyle{ a }[/math] is a scalar satisfying [math]\displaystyle{ |a| \leq 1 }[/math] and [math]\displaystyle{ x \in X. }[/math]
- [math]\displaystyle{ p(a x) \leq p(b x) }[/math] whenever [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] are scalars satisfying [math]\displaystyle{ |a| \leq |b| }[/math] and [math]\displaystyle{ x \in X. }[/math]
- [math]\displaystyle{ \{x \in X : p(x) \leq t\} }[/math] is a balanced set for every non-negative real [math]\displaystyle{ t \geq 0. }[/math]
If [math]\displaystyle{ p }[/math] is a balanced function then [math]\displaystyle{ p(a x) = p(|a| x) }[/math] for every scalar [math]\displaystyle{ a }[/math] and vector [math]\displaystyle{ x \in X; }[/math] so in particular, [math]\displaystyle{ p(u x) = p(x) }[/math] for every unit length scalar [math]\displaystyle{ u }[/math] (satisfying [math]\displaystyle{ |u| = 1 }[/math]) and every [math]\displaystyle{ x \in X. }[/math][9] Using [math]\displaystyle{ u := -1 }[/math] shows that every balanced function is a symmetric function.
A real-valued function [math]\displaystyle{ p : X \to \R }[/math] is a seminorm if and only if it is a balanced sublinear function.
See also
- Absolutely convex set
- Absorbing set – Set that can be "inflated" to reach any point
- Bounded set (topological vector space) – Generalization of boundedness
- Convex set – In geometry, set whose intersection with every line is a single line segment
- Star domain – Property of point sets in Euclidean spaces
- Symmetric set – Property of group subsets (mathematics)
- Topological vector space – Vector space with a notion of nearness
References
- ↑ 1.0 1.1 Swartz 1992, pp. 4-8.
- ↑ 2.0 2.1 Narici & Beckenstein 2011, pp. 107-110.
- ↑ Jarchow 1981, p. 34.
- ↑ Narici & Beckenstein 2011, pp. 156-175.
- ↑ 5.0 5.1 5.2 Rudin 1991, pp. 10-14.
- ↑ Rudin 1991, p. 38.
- ↑ Narici & Beckenstein 2011, pp. 115-154.
- ↑ Trèves 2006, p. 56.
- ↑ 9.0 9.1 Schechter 1996, p. 313.
- ↑ Assuming that all vector spaces containing a set [math]\displaystyle{ S }[/math] are over the same field, when describing the set as being "balanced", it is not necessary to mention a vector space containing [math]\displaystyle{ S. }[/math] That is, "[math]\displaystyle{ S }[/math] is balanced" may be written in place of "[math]\displaystyle{ S }[/math] is a balanced subset of [math]\displaystyle{ X }[/math]".
- ↑ 2.0 2.1 [math]\displaystyle{ W }[/math] being star shaped at the origin means that [math]\displaystyle{ 0 \in W }[/math] and [math]\displaystyle{ r w \in W }[/math] for all [math]\displaystyle{ 0 \leq r \leq 1 }[/math] and [math]\displaystyle{ w \in W. }[/math]
Proofs
- ↑ Let [math]\displaystyle{ B \subseteq X }[/math] be balanced. If its topological interior [math]\displaystyle{ \operatorname{Int}_X B }[/math] is empty then it is balanced so assume otherwise and let [math]\displaystyle{ |s| \leq 1 }[/math] be a scalar. If [math]\displaystyle{ s \neq 0 }[/math] then the map [math]\displaystyle{ X \to X }[/math] defined by [math]\displaystyle{ x \mapsto s x }[/math] is a homeomorphism, which implies [math]\displaystyle{ s \operatorname{Int}_X B = \operatorname{Int}_X (s B) \subseteq s B \subseteq B; }[/math] because [math]\displaystyle{ s \operatorname{Int}_X B }[/math] is open, [math]\displaystyle{ s \operatorname{Int}_X B \subseteq \operatorname{Int}_X B }[/math] so that it only remains to show that this is true for [math]\displaystyle{ s = 0. }[/math] However, [math]\displaystyle{ 0 \in \operatorname{Int}_X B }[/math] might not be true but when it is true then [math]\displaystyle{ \operatorname{Int}_X B }[/math] will be balanced. [math]\displaystyle{ \blacksquare }[/math]
Sources
- Bourbaki, Nicolas (1987). Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. 2. Berlin New York: Springer-Verlag. ISBN 978-3-540-42338-6. OCLC 17499190. http://www.numdam.org/item?id=AIF_1950__2__5_0.
- Conway, John (1990). A course in functional analysis. Graduate Texts in Mathematics. 96 (2nd ed.). New York: Springer-Verlag. ISBN 978-0-387-97245-9. OCLC 21195908.
- Template:Dunford Schwartz Linear Operators Part 1 General Theory
- Edwards, Robert E. (Jan 1, 1995). Functional Analysis: Theory and Applications. New York: Dover Publications. ISBN 978-0-486-68143-6. OCLC 30593138.
- Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
- Köthe, Gottfried (1969). Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. 159. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. OCLC 840293704.
- Köthe, Gottfried (1979). Topological Vector Spaces II. Grundlehren der mathematischen Wissenschaften. 237. New York: Springer Science & Business Media. ISBN 978-0-387-90400-9. OCLC 180577972.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. 53. Cambridge England: Cambridge University Press. ISBN 978-0-521-29882-7. OCLC 589250.
- Rudin, Walter (January 1, 1991). Functional Analysis. International Series in Pure and Applied Mathematics. 8 (Second ed.). New York, NY: McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. OCLC 21163277. https://archive.org/details/functionalanalys00rudi.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Schechter, Eric (24 October 1996) (in en). Handbook of Analysis and Its Foundations. Academic Press. ISBN 978-0-08-053299-8. https://books.google.com/books?id=eqUv3Bcd56EC&pg=PA313.
- Swartz, Charles (1992). An introduction to Functional Analysis. New York: M. Dekker. ISBN 978-0-8247-8643-4. OCLC 24909067.
- Trèves, François (August 6, 2006). Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
- Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
Original source: https://en.wikipedia.org/wiki/Balanced set.
Read more |